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Preface 

This supplement is a summary of new X-ray structure determina¬ 
tions published during the past four years. As such it follows strictly the 
form used in Part II of the second edition of '^The Structure of Crystals'^ 

and aims to include all new studies that lead at least to cell dimensions. 
In order to facilitate comparison, the figure numbers and paragraph desig¬ 

nations are continuations of those in the book. As before, reference num¬ 
bers, with the year in bold-face, apply to the appended bibliography. The 
grouping of compounds is identical with that previously used except that 
in the chapter covering the type RX3 a separate table has been created 
for crystals of the composition Rx(MX2)y. 

The writer is indebted to R. B. Corey and K. Pestrecov for much help 

in making the illustrations and to A. A. Murtland for assi«t^nce in pre¬ 
paring the bibliography. 

Rockefeller Institute for Medical Research 
New York, N. Y. 
Febroary, 1935 
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Chapter XA. Structures of the Elements 

Most of the new data of Table I are accurate determinations of the 
cell dimensions of the metallic elements. For some metals which can 
easily be prepared in a state of great chemical purity the edge lengths of 
the units are now known with an accuracy of 0.0002 to 0.0003 A. The 
error for most elements is, however, about ten times greater. Spacings 
to the fourth decimal place have real significance only if the purity is 
precisely known, if the sample is sufficiently outgassed and otherwise pre¬ 
pared for measurement and if the temperature is determined. It is not 
always possible to be sure from the published data that all these condi¬ 
tions have been properly met; the accuracy limits stated in Table I are 
therefore for the most part those set by the investigators themselves. 

New information about the atomic arrangements in elements are re¬ 
corded in the paragraphs that follow. 

{v) In place of the previously described tetragonal structure for gallium 
there has recently been given an orthorhombic (pseudo-tetragonal) ar¬ 
rangement based on and having its eight atoms in the special positions: 

(f) iuv; i u, l-v; i u+i v; u+|, §-v; 

iu^; i Q, v+l; i i-u, i, 4-u, v+i 

with u= 0.159, v= 0.080. As is evident from Figure 275 (drawn for 
comparison with Figure 168) this arrangement is very different from the 
earlier one. 

Fig. 275a.—(left) The unit cell of the new ortho¬ 
rhombic arrangenient found for metallic gal¬ 
lium as projected on its b-face. 

Fig. 2756.—(right) A packing drawing of the 
gallium atoms shown in a. 
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8 THE STRUCTURE OF CRYSTALS 

(w) The rhombohedral structure of mercury has recently been confirmed 
by single crystal measurements at —50° C. At the same time it is shown 
that the diffraction data upon which a false hexagonal arrangement was 
based (1922, 1) apparently were a mixture of the lines of mercury and of 
solid CO2. 

(x) Three recent determinations agree with the original in giving indium 
a face-centered tetragonal arrangement with atoms at 000; JJO; JO^; 0|J. 

(y) The X-ray patterns from the jS-form of nitrogen are thought to in¬ 
dicate that it is a close-packed assemblage of spherical (rotating) N2 

molecules. The parameter chosen for the center of gravity of these mol¬ 
ecules is 0.22. 

(z) Hexagonal nickel prepared by a glow discharge in N2 has the dimen¬ 
sions stated in the table; prepared in H2 its unit is larger: A, 
Cq=4.29 a. It reverts to cubic nickel if heated to 300° C. 

(aa) This modification of tungsten, said to be obtained by electrolyses 
under various conditions, is thought to have 8 atoms in its unit. The 
atoms have been placed at (2a) and (6g) (of 1930, 352) though no in¬ 
tensity data are given in support of this assignment. 

(ab) The recorded unit cube of a>rhodium is considered to contain 48 
atoms. This modification is produced by the reduction of rhodium salts, 
mixed with the usual form it is also said to result from electrolytic reduction ; 

(ac) Plastic sulfur is rubber-like in that it crystallizes on stretching. 
The monoclinic unit recorded in the table contains 112 atoms; its space 
group is given as Cgh- As monoclinic sulfur (either stretched or not) ages, 
the diffraction lines of the orthorhombic form gradually appear. 

(ad) The monoclinic cell of a-Se contains 32 atoms; its space group is 
reported to be C^h. Crystals of a solid solution of selenium and sulfur 
(55.2 wt. % Se), which presumably are isomorphous with a second modi¬ 
fication of monoclinic Se, have been assigned a unit different from that 
of the /3-Se reported in the table. The unit of this mixed crystal has a^^ 
8.48 A, bo=13.34 A, c^-8.33 A, /5=67°30'. 

(ae) The two uranium atoms in the centered unit having the dimen¬ 
sions of the table are said to be at 000; O^f. Another determination has 
made uranium body-centered cubic with A (1930, 424). 

(of) A second form of beryllium is reported to be present to the extent 
of about 10% in samples which have been heated for some time in vacuo 
at 600°—800° C. It is described as hexagonal with a^=7.1 A, Cq=10.8 A 
and with ca 60 atoms in this unit cell (1933, 224). 

(ag) Electrodeposition at high pn yields i3-cobalt, at low pn a mixture 
of P and a forms (1932, 262). The jS-cobalt becomes cubic above 450° C 
without change in crystal boundaries; it reverts only on cold rolling or 
through high temperature annealing (1932, 463). 
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Table I. The Crystal Structures OF THE Elements 

Element Crystal Type of Cq or a References 

system structure 

Ag Cubic F.c. (a) 4.0772± 1932, 348; 1933, 342; 
Silver 0.00021 1934, 199. 

A1 Cubic F.c. (a) 2 4.0406± 1931, 8; 1932, 336, 
Aluminum 0.0002 348; 1933, 342, 420. 

As 
Arsenic 

Hexagonal As {e) 1934, 295. 

All Cubic F.c. (a) 4.0699± 1932, 348; 1933, 342, 
Gold 0.0003 3 343; 1934, 124, 357. 

Be Hexagonal C.p. (5), 2.2680± 3.5942± 1932, 329; 1933, 224, 
Beryllium (af) 0.0002 0.0003 319. 

Bi^ Hexagonal As (c) 1930, 369, 434; 1931, 
Bismuth 420; 1932, 162. 

C® Hexagonal (h) 1931, 208. 
Graphite 

/3-Ca (>450° C) Hexagonal (ah) 3.98 6.52 1933, 121, 156; 1934, 
Calcium 93. 

Cb Cubic B.c. (c) 3.294± 1931, 323, 324; 1932, 
Columbium 0.001« 371; 1934, 43. 

Cd Hexagonal C.p. (h) 2.9736± 5.6058db 1931,238; 1932,428a. 
Cadmium 0.0005 0.0005 

a-Ce Cubic F.c. (a) 5.143± 1932, 372. 
Cerium 

/3-Co 
Cobalt 

(ag) 

0.004 

1932, 262. 

a-Cr Cubic B.c. (c) 2.8787 1931,367a;1932,369; 
Chromium 1934, 125. 

Cu Cubic F.c. (a) 3.6077± 1-932, 348; 1933, 328, 
Copper 0.0002 8 342; 1934, 357. 

of-Fe Cubic ® B.c. (c) 2.8607± 1930, 439; 1931, 16; 
Iron 0.0002 1932, 62, 336, 369; 

1933, 128, 342; 1934, 
124, 137. 

1 At 600° C, a^-4.1276 A (1934, 199). 
2 There is no allotropic change up to 600° C (1931, 8; 1933, 420). 
»At 476°C, a^=:4.l010 A. 
* The thermal expansion from room temperature to the melting point has been 

carefully measured by X-ray means (1931, 127; 1932, 163; 1934, 120, 121a). 
® Photographs of incandescent electrodes show that expansion is all normal to the 

basal plane. 
® From a very ductile preparation of Cb made by thermal decomposition of CbCU 

in vacuo. Other a^^^s are ca 0.01 A larger. 
^The other precision measurement'(1931, 238) gives lower values: a,,*2.9724, 

00*^5.6042. 
8 At 475° C, a^ *3.6514 A. 
• Measurements have been made up to 1100° C (1930, 439; 1933, 128; 1934, 137). 
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Element Crystal 

system 
Type of 

structure 
Co or a Reference* 

Ga 
Gallium 

Ortho¬ 
rhombic 

O’), w 4.506 

bo- 

4.606 
7.642 

1932, 282; 1933, 281. 

Hg 
Mercury 

Hexagonal (*), (w) 2.999 
at “ 

70°32' 
46® C 

1929, 218; 1932, 209; 
1933, 321. 

In 
Indium 

Tetragonal (to), (x) 4.583 4.936 1932, 134; 1933, 429, 
527. 

Ir 
Iridium 

Cubic F.c. (a) 3.8312± 
0.0005 

1932, 348; 1933, 342. 

Kr 
Krypton 

Cubic ^ F.c. (a) 5.69 at 88 °K 1930, 428; 1932, 392. 

a-La 
Lanthanum 

Hexagonal C.p. (6) 3.75 6.06 1930, 426; 1932, 372. 

/3-La* 
Lanthanum 

Cubic F.c. (a) 5.296 1933, 628; 1934, 233. 

Mg 
Magnesium 

Mn (a, 7) 
Manganese 

Hexagonal C.p. (6) 3.2022± 
0.0002 

6.1991± 
0.0004 

1932, 428a. 

1931, 411. 

Mo 
Molybdenum 

Cubic B.e. (c) 3.140=b 
0.001 

1932, 348. 

a-Na (<35® K) 
Nitrogen 

Cubic (0) 6.67 1932, 391. 

/3-Nj 035® K) 
Nitrogen 

Hexagonal (V) 4.039 6.670 1932, 391, 466; 1934, 
272. 

Nd 
Neodymium 

Hexagonal C.p. (6) 3.657 5.88 1932, 372. 

a-Ni 
Nickel 

Cubic F.c. (0) 3.6176» 1931, 60; 1932, 62, 
348; 1934, 122, 125, 
198. 

/3-Ni 
Nickel 

0* 
Oxygen 

Hexagonal 

Ortho¬ 
rhombic 

C.p. (6), 

(t) 
2.60 4.16 1931, 60. 

1932, 316, 391. 

Os 
Osmium 

Hexagonal C.p. (6) 2.716 4.331 1932, 434. 

Pb 
Lead 

Cubic F.c. (0) 4.9396=t 
0.0003 

1931, 420; 1932, 120, 
348; 1933, 327, 342; 
1934, 192. 

Pd 
Palladium 

Cubic F.c. (a) 3.8823g 1931, 427; 1932, 348; 
1933, 342, 343. 

‘ There is no X-ray evidence for a structural transition. 
»This form appears as a surface layer on the a-material after vacuum at 

350® for several days, * 
• Another determination, on 99.88% Ni, gives -.3.5143 A. 
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Element Crystal 

system 

Type of 

structure 
Oo ^0 or a References 

Pr 
Praseodymium 

Hexagonal C.p. (5) 3.657 5.924 1932, 93, 390. 

Pt 
Platinum 

Cubic 1 F.c. (a) 3.9161± 
0.0003 

1933, 342, 343; 1934, 
199. 

Re 
Rhenium 

Hexagonal C.p. (6) 2.7553± 4.4493± 
0.0004 0.0003 

1931, 3, 4, 305; 1932, 
428a. 

a-Rh 
Rhodium 

Cubic {ab) 9.211 1931, 225, 226. 

/3-Rh 
Rhodium 

Cubic B.c. (c) 3.7955» 1931, 225; 1932, 348; 
1933, 342, 343. 

S Monoclinic (ac) 26.4 12.32 1930,119a; 1931,448; 
Sulfur (Plastic form stretched) bo *9.26, ^=79®15' 1932, 447; 1934, 175. 

Sb 
Antimony 

Hexagonal Aa (e) ’ 1932, 263. 

Se (a-form) 
Selenium 

Monoclinic (.ad) 8.992 11.52 
b^-8.973, /3=91°34' 

1931, 152, 153; 1934, 
136. 

Se (^-form) 
Selenium 

Monoclinic (ad) 12.74 9.25 
b^«8.04, /3-93°4' 

1934, 130. 

Sn (white) 
Tin 

Tetragonal («) 5.8194db 3.1753± 
0.0003 0.0009 

1932,428a; 1933,429. 

Ta 
Tantalum 

T1 (a, ^) 
Thallium 

Cubic B.c. (c) 3.296* 1932, 348, 371; 1934, 
43. 

1931, 411. 

U 
Uranium 

Monoclinic (oe) 2.829 3.308 
b^»4.887, i3*63®26' 

1930, 424; 1933, 507. 

W 
Tungsten 

Cubic B.c. (c) 3.1589 1932, 348; 1933, 318; 
1934, 187. 

W (second form) 
Tungsten 

Cubic (aa) 5.038 1933, 318. 

X 
Xenon 

Cubic F.c. (a) 6.24 at 88® K 1930,220a; 1932,392. 

Y 
Yttrium 

Hexagonal C.p. (6) 3.66, 5.8I4 1932, 370. 

Zn* 
Zinc 

Hexagonal C.p. (b) 2.6589 4.9349 1932, 52, 428a; 1933, 
337, 339, 493; 1934, 
199. 

Zr Cubic B.c. (c) 3.61 near 862° C 1932, 84, 85. 
Zirconium 

1 At 600° C, a^«3.9383 A. 
* Explosive’^ Sb is amorphous; it becomes crystalline on exploding. 
* This measurement was made upon a very ductile sample prepared by the thermal 

dissociation of TaCU in vacuo. Results on other material are higher (3.311 A in 1932, 
348). 

* At 415® C, a^, * 2.6792 A, c^ * 5.0481 A. There is no structural change up to 
the melting point. 
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(ah) The evidence concerning the structure of /S-calcium (stable above 
450° C) was at first contradictory. It is now known that if the metal is 
pure it is hexagonal close-packed (6); if impure it may be either hexagonal 
or body-centered cubic (c) with aQ=ca 4.33 A. 

Alloys 

A bibliography of new papers describing X-ray measurements on alloy 
systems is contained in Table II. The structures that occur in metallic 
systems are of three kinds: (1) solid solutions of one metal in the lattice 
of another, (2) definite chemical compounds with atoms combined together 
in stoichiometric proportions, (3) phases with atoms in fixed geometric 
array but with compositions that can vary over wide limits. Many ex¬ 
amples of the second type are described in succeeding chapters but no 
attempt has been made to summarize the data about structures (1) and (3). 

A few non-metallic compounds such as pyrrhotite (FeS) can contain 
an excess of one or the other of their atomic components; similar com¬ 
pounds, which we often erroneously, from a structural standpoint, describe 
as being capable of taking one or both of their constituents into solid 
solution, are common amongst intermetallic compounds. Within recent 
years another kind of intermetallic compound, the so-called superlattice 
compound, has become familiar. A superlattice is a relatively complicated 
atomic arrangement which arises, as an equilibrium state, through the 
prolonged annealing of an alloy of stoichiometric atomic composition. 
Such alloys before annealing are usually solid solutions having their atoms 
in haphazard distribution. Especially simple superlattices are illustrated 
by the compounds AuCu and AuCiia; Sb2Tl7 is a more complicated example. 

Table II. Bibliography of Alloy Systems 

AUoy Alloy 

system References system References 

Ag-Al 1932,364; 1933,2,29; 1934,1, Ag-Sn 1931, 326. 
139. Ag-Zn 1932, 426, 465; 1933, 341. 

Ag-As 1931, 66. Al-Au 1931, 244. 
Ag-Au 1933, 116, 283, 502. Ai-Co 1931, 105. 
Ag-Bi 1931, 66. Al-Cu 1931,334,365; 1933,328,357, 
Ag-Cd 1931, 436; 1932, 430; 1933, 358, 436, 447, 546; 1934, 211, 

450. 282. 
Ag-Cu 1930, 3a; 1931, 96, 418; 1932, AJ-Fe 1932, 63, 64; 1933, 334; 1934, 

306, 477; 1933, 414, 505. 313, 313a. 
Ag-Hg 1931, 313, 367; 1933, 494. Al-Li 1931, 348. 
Ag-Li 1931, 348. Al-Mg 1931, 396; 1932, 407; 1933, 
Ag^Pd 1931, 427; 1933, 275. 414; 1934, 238a, 340. 
Ag-Rh 1933, 118. Al-Mn 1931, 52. 
Ag-Sb 1931, 66. Al-Ti 1931, 114. 
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Alloy 

system References 

Al-Zn 1932,148,313,409, 416; 1934, 
197, 351. 

Afl-Cu 1929, 205a, 205b. 
As-Sn 1934,295. 
Au-Cd 1932, 442. 
Au-Cu 1931, 366, 386; 1932, 178; 

1933, 419; 1934, 85a, 357. 
Au-Fe 1934, 124. 
Au-Mn 1934, 40. 
Au-Pd 1931, 427; 1934, 181. 
Au-Pt 1931, 428. 
Au-Rh 1933, 118. 
Au-Sb 1931, 326; 1932, 58. 
Au-Sn 1931, 426; 1932, 58. 

B-Co 1933, 47. 
B-Fe 1933, 47. 
B-Ni 1933, 47. 
Be-Cu 1933, 464. 
Bi-Pb 1931, 420; 1932,246; 1934,82. 
Bi-Sb 1932, 59; 1934, 76. 
Bi-Se 1930,434. 
Bi-Sn 1931, 420; 1932, 246. 
Bi-Tl 1931, 411; 1934, 193. 

C-Cr 1930, 465; 1931, 468; 1932, 
197; 1933, 401. 

C-Fe 1931,339,340,341, 414; 1932, 
226, 281, 474; 1933, 128, 326; 
1934, 44, 97, 98, 259, 354. 

C-Ni 1931, 509; 1933, 415. 
Cd-Cu 1931, 61; 1933, 338. 
Cd-Hg 1932,438. 
Cd-Li 1933, 27; 1934, 11, 310. 
Cd-Mg 1930,72a. 
Cd-Ni 1931, 105. 
Cd-Pt 1931,371. 
Cd-Sb 1930, 379; 1932, 1; 1933, 167. 
Cd-Sn 1931,295. 
Cd-Zn 1932,62. 
Ce-H, 1934,233. 
Co-Mn 1934, 137. 
Co-W 1932, 4; 1933, 469. 
Co-Zn 1930, 454; 1931, 106; 1932, 

353. 
Cr-Fe 1931, 16, 367a; 1932, 369; 

1933, 196. 
1930, 376; 1934, 125. 
1932, 95. 
1930, 247a. 

Alloy 

system References 

Cu-Mg 1934, 242. 
Cu-Mn 1931,411. 
Cu-Ni 1931, 474; 1934, 198. 
Cu-Pd 1932,292. 
Cu-Si 1931, 19, 389. 
Cu-Sn 1927, 313; 1932, 94, 229, 422, 

426; 1933, 263, 268; 1934, 39, 
118. 

Cu-Zn 1930,370; 1931,51; 1932,264, 
268, 349, 350, 432, 466; 1933, 
141, 168, 339, 340; 1934, 2, 
335, 349. 

Fe-Hj 1933,601. 
Fe-Hg 1932, 77. 
Fe-Mn 1930,388; 1931,125,342, 406; 

1933, 486. 
Fe-N 1931,69; 1933,324,610; 1934, 

44. 
Fe-Ni 1931, 358; 1932, 234; 1933, 

76; 1934, 67. 
Fe-Si 1933, 516. 
Fe-Sn 1933, 125. 
Fe-V 1930, 456; 1934, 148. 
Fe-W 1931, 343; 1932, 435. 
Fe-Zn 1931, 105. 

Hj-La 1934,233. 
Hj-Pd 1933, 274, 384. 
Hj-Ta 1931, 144; 1934, 212. 
H,-Ti 1931, 144. 
Hj-V 1931, 144. 
Hs-Zr 1931, 144. 
Hg-Ni 1932,77. 
Hg-Sn 1933,439. 

Ir-Os 1932,434. 

Li-Sn 1932,20. 

Mg-Mn 1931,397. 
Mg-Zn 1932, 407; 1933, 238a, 414, 

465. 
Mn-N 1933,411. 
Mn-Si 1933, 68; 1934, 337. 
Mn-Zn 1930, 435; 1931, 346; 1932, 

353. 
Mo-Ni 1934, 137. 

Cr-Ni 
Cu-Fe 
Cu-Li 
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Alloy 

system References 

Na-Pb 1933, 451. 
Na-Tl 1932, 500. 

Ni-Zn 1930, 454; 1931, 105; 1932, 
200; 1933, 85; 1934, 258. 

Pb-Sb 1933, 327. 
Pb^n 1933, 327. 
Pb-Tl 1931, 411; 1934, 192. 
Pd-Zn 1931, 105. 
Pt“Zn 1931, 106. 

Rh-Zn 1931, 105. 

Sb-Sn 1931, 49, 224; 1933, 425. 
Sb-Tl 1931, 411; 1934, 180. 
Sb-Zn 1933, 167. 
Sn-Tl 1931,411; 1933, 215. 

Ag-Cu-Ni 1934, 210. 
Ag-H,-Pd 1930, 237a; 1933, 275. 

Alloy 

system References 

Al-C-Fe 1934, 341. 
Al-Cr-Fe 1932, 399. 
Al-Cu-Mn 1933, 192, 193; 1934, 26, 107. 
Al-Fe-N 1934, 190. 

Au-Hj-Pd 1934, 181. 

Bi-S-Te 1933, 142. 

C-Co-Fe 1932, 451. 
C-Cr-Fe 1931, 468; 1932, 475. 
C-Cr-Ni 1934, 248. 
C-Fe-Mn 1932, 15; 1934, 65. 
C-Fe-W 1931, 343. 
Co-Fe-Mn 1933, 263; 1934, 137. 

Fe-Ni-V 1934, 148. 
Fe-P-Si 1933, 401. 

Al-C-Cr-Mo 1932, 230. 



Chapter XIA. Structures of the Type RX 

(ac) For some time there was debate as to whether the rhombohedral 
unit of AgCN contains one or two molecules and whether the correct space 
group is Cly or A recent recalculation proves that the cell of Table I 
is monomolecular with Cg^ as space group and that the atoms are all on 
trigonal axes with the coordinates (a) uuu. Parameters have not been 
determined. 

AgBr and AgCN form cubic solid solutions; by extrapolation from meas¬ 
urements on them, it can be concluded that cubic AgCN would have 

ao=5.69 A if it were stable. 
(ad) The low temperature modification of AuCd, stable at room tem¬ 

perature, has been assigned a distorted CsCl structure based on the 

orthorhombic space group The two molecules in its unit have atoms 
in the positions: 

Cd: (e) Oui; Ouf with u=ca ^ [or 000; Of J] 

Au: (f) fvf; with v=*ca ff [or ffO; fHl- 

(ae) The data on CdLi are contradictory. One determination gives it 

the cubic body-centered CsCl structure (a) with ao==3.32 A; the other 
assigns to it the NaTl superstructure [(ao), below] with a^, »= 6.687 A. 

(a/) No diffraction lines have been found to give CsCN a unit larger 

than the one-molecule cell. The available experimental data thus indi¬ 
cate that in this cyanide, as in the other alkali cyanides, the CN group 
functions geometrically as a single atom. 

(ag) It has recently been concluded that the triclinic symmetry pre¬ 
viously assigned to CuO is unnecessarily low. The proposed arrangement, 

developed from C^h, has atoms in the following positions: 

Cu: (c) m fH; ffO; ifl 
0: (e) OuJ; Ofif; J, u+i, J; f, f-u, f with u=0.08. 

(ah) A new structure, based on photographic data, has been proposed 
for covellite, CuS. It differs from the earlier one (q) mainly in transfer¬ 
ring the two sulfur atoms, which were in (a), to the coordinates (c) ff J; 

16 
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Table I. The Crystal Structures or the Compounds RX 

Substance Symmetry Structure c^ or a References 

type 

AgCN Hexagonal (k), (ac) 3.88 loriv 1933, 317; 1934, 288. 
Agl Hexagonal ZnO (d) 1 4.580 7.494 1931, 46; 1934, 141. 

Agl (low) Cubic * ZnS (c) 6.473 1931, 46; 1934, 141. 

Agl (high) Cubic (aw) 5.034 1931, 46; 1934, 257. 
AgLi Cubic CsCl (a) 3.168 1930, 247; 1931, 348; 

1933, 523. 
AlLi Cubic 3.23 1931, 348. 
AlNd Cubic CsCl (a) 3.73 1934, 255. 
AuCd (low) Ortho¬ (ad) 3.144 4.745 1932, 341. 

rhombic bo =4.851 
AuCd (high) Cubic CsCl (a) 3.34 at 400° C 1932, 341. 
AuSn Hexagonal NiAs (e) 4.314 5.512 1931, 426; 1932, 58; 

1933, 223. 
BaNH Cubic NaCI (6) 5.84 1934, 103. 
BaO Cubic NaCl (6) 6.523 1933, 80. 
/3-CO Hexagonal (at) 4.11 6.79 1934, 272. 
CaNH Cubic NaCl (h) 5.006 1933, 137; 1934, 103. 
CaTl Cubic CsCl (o) 3.847 1933, 523. 
CdLi Cubic (ae) [6.687] 1933, 27, 523. 
CdO Cubic NaCl (6) 4.689 1931, 272; 1933, 158. 
CdSb Ortho¬ 

rhombic 
CdSb (n)» 1930, 379; 1932, 1. 

CoS Hexagonal NiAs («) 3.38 5.20 1932, 90. 
CsCN Cubic CsCl (a), 4.25 

(af) 

1931, 319. 

CsCI (low) Cubic CsCl (a) 4.20 at ca 460° C 1934, 286. 
CsCl (high, Cubic NaCl (6) 7.10 1933, 485; 1934, 286. 
>466*^ C) 
CsHS Cubic CsCl (a) 4.29 1934, 287. 
CuF Cubic ZnS (c) 4.25, 1933, 122. 
CuO Monoclinic (o), (ag) 4.66 5.09 1933, 479. 
(Tenorite) b^=3.40, /3=99°30' 

CuS 
(Covellite) 

Hexagonal (q), (ah) 3.76 16.26 1930, 371; 1932, 342. 

(Cu, Fe, Mo, Sn)4(S, As, Te)3-4 ZnS (c) 5.304 1933, 517. 
(Colusite) Cubic 

FeO Cubic NaCl (6), 4.33, 1933, 234, 235; 1934, 
(at), (ax) 77. 

FeS Hexagonal NiAs (e), 1932, 253; 1933, 162, 
(aj) 165; 1934, 176. 

FeSi Cubic (t) 1930, 340a. 

»u « 0.37i. 
* Precipitates with excess of Ag ions. 
•According to one analysis there are two forms of CdSb, both hexagonal with 

identical unit cells (1930, 379). 
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Substance Symmetry Structure Co or a References 
type 

GeS Ortho¬ {ah) 4.29 3.64 1932, 489. 
rhombic bo = =10.42 

HBr (low) Ortho- (al) 5.555 6.063 1931, 316, 317; 1932, 
rhombic (pseudo-cubic) bo =5.64 392; 1933, 315. 

HBr (high) Cubic HCl (h) 5.76 at - >170° C 1931, 316, 317; 1933, 
315. 

HCl (low) Ortho¬ (al) 5.03 5.71 1931, 316, 317; 1933, 
rhombic bo =5.35 315. 

HCl (high) Cubic HCl (h) 5.46 1931, 316, 317; 1933, 
315. 

HI Tetragonal (am) 6.19 6.68 1931, 316, 317; 1932, 
at 125° K 392. 

HgF Tetragonal Hg^Cb 

(g) 

3.66 10.9 1933, 122. 

HgLi Cul)ic CsCl (a) 3.287 1933, 523. 
KCN Cubic NaCl (6), 

(an) 

6.51 1931, 319. 

KH8 (low) Hexagonal NaHS (az) 4.374 68°51' 1934, 287. 
KHS (high, Cubic NaCl (b) 6.60 1934, 287. 
above ca 170° C) 

LiGa Cubic NaTl (ao) 6.195 1933, 523. 
LiH Cubic NaCl (b) 1932, 48. 
Liln Cubic NaTl (ao) 6.786 1933, 523. 
LiOH Tetragonal PbO (/), 

(ap) 

3.546 4.334 1932, 144; 1933, 127. 

LiTl Cubic CsCl (a) 3.424 1933, 523. 
LiZn Cubic NaTl (ao) 6.209 1933, 523. 

MgPr Cubic CsCl (a), 

(?) 

3.88 1933, 387. 

MgTl Cubic CsCl (a) 3.628 1933, 523. 

MgZn Hexagonal (aq) 5.33 17.16 1933, 465. 
MnO Cubic NaCl (6), 

(ax) 

1934, 77. 

MnS (red Cubic ZnS (c) 5.600± 1932, 411; 1933, 417. 
precipitate) 0.002 

MnS (green Cubic NaCl (6), 5.212± 1933, 417; 1934, 77. 
precipitate) (ax) 0.002 

MnS (red Hexagonal ZnO (d) 3.976± 6.432± 1932, 411; 1933, 417. 
precipitate) 0.002 0.004 

MoC Hexagonal (ar) 2.901 2.786 1932, 450. 
7-NH4Br Tetragonal (ap) 6.007 4.035 1934, 132. 
(at -100° C) 
NH4HS Tetragonal PbO(/), 

(ap) 

6.01 4.01 1934, 287. 

NaBi Tetragonal* 3.46 4.80 1932, 499. 
NaCN Cubic NaCl (6) 5.83 1931, 319. 
NaHS (low) Hexagonal NaHS (az) 3.986 68°5' 1934, 287. 

• Said to contain one molecule and probably to be body-centered. 
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Substance Symmetry Structure flo Co or a References 

NaHS (high, Cubic 

type 

NaCl {h) 6.05 1934, 287. 
above ca 90° C) 

Nain Cubic NaTl {ao] 1 7.297 1933, 526. 
NaTl Cubic NaTl {ao) 1 7.473 1932, 500. 
NiAs Hexagonal* NiAs {e) 3.602 5.009 1933, 130. 
NiO Cubic NaCl (6) 4.1684± 1931, 37, 272; 1933, 

NiS 
PbO (red) 

Hexagonal 
Tetragonal PbO (/) 

0.0001 

3.968 5.011 

87. 
1931, 264. 
1932, 120. 

PbO (yellow) Ortho¬ {X) 5.459 5.859 1932, 120. 

PtS (Cooperite) 
rhombic 
Tetragonal (av) 

b„=4.723 
3.47 6.10 1932, 17. 

(Pt, Pd, Ni)S Tetragonal {as) 6.37 6.58 1932, 17. 
(Braggite) 

PtSn Hexagonal NiAs {e) 4.103 5.428 1932, 236; 1933, 223. 
RbCN Cubic NaCl {b) 6.82 1931, 319. 
RbHS (low) Hexagonal NaHS (az) 4.525 69°20' 1934, 287. 
RbHS (high) Cubic NaCl (6) 6.93 at ca 200° C 1934, 287. 
SbZn Ortho¬ CdSb (n) 6.17 3.94 1933, 167. 

SiC (II) 
rhombic 
Hexagonal {V)j (au) 

b„=.8.27 
3.076 15.07 1932, 205; 1933, 59. 

SnAs Cubic NaCl (6), 5.681 1934, 295. 

SnO Tetragonal 
(ay) 

PbO (/) 1932, 469. 
SrNH Cubic NaCl (5) 5.45 1934, 103. 
SrO Cubic NaCl (6) 5.144 1933, 80. 
SrTl Cubic CsCl (a) 4.024 1933, 523. 
TaC Cubic NaCl (6) 4.4460± 1933, 424; 1934, 42. 

TiC Cubic NaCl (6) 
0.0005 
4.320 1931, 59; 1932, 414; 

TICN Cubic CsCl (a) 3.82 
1934, 42. 
1934, 256a. 

TlCl Cubic CsCl (a) The value ao =3.380 in 1933, 302 is un- 

VO Cubic NaCl (6) 
doubtedly a misprint. 
4.08 1932, 302. 

WC Hexagonal 2.910 2.838 1931, 343. 
ZnO Hexagonal! ZnO {d) 3.248 5.203 1933, 218. 
ZrC Cubic NaCl (6) 4.687 1934, 42. 

* There is no change in structure below 600' C. 
t No change in structure between 110° and 1300° C. 

f Jf. The other atoms are similarly placed in both structures. The new 
copper parameter u=0.107 in (f) |fu; etc. is nearly the same as the old; 

the sulfur parameter v=0.06l2 in (e) OOv; etc. is considerably different. 

This new structure has the atomic separations characteristic of neutral 
atoms (Cu-S=2.20-2.35 A, S-S=2.05 A). 
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{at) The values of a^ for specimens of FeO, which invariably are de¬ 
ficient in iron, increase with the amount of iron present. For an oxide 
containing 76.08% Fe, ao=4.2816 A; for a sample with 76.72% Fe, %= 
4.3010 A. By extrapolation pure FeO (77.73% Fe) would have a^-4.332 A. 

(aj) Pyrrhotite has the composition FeiS(i+x) not by reason of the 
presence of an excess of sulfur but because some of the iron atoms are 
missing from their structural positions. It is said that pure FeS gives 
evidence of a superlattice containing 12 molecules; the a^ of this lattice 
is the diagonal of a^ for the simple cell, its c^ is twice as great: aQ=5.946 
A, c^= 11.720 A. 

Ordinary pyrrhotite (aQ=3.41 A, Cq=5.72 A) becomes ferromagnetic 
if heated above 200° C; this form, giving ao=3.47 A, Co=5.84 A at room 
temperature, reverts to the non-magnetic form if heated above 450° C 
(1934, 176). 

(a/c) From photographic data it has been concluded that the four mol¬ 
ecules of GeS are in special positions (c) of the space group V^®: 

Ge: (c) uvO; u, |-v, f; u+|, v, |-u, v+|, 0 
with u=0.167, v=—0.125 

S: (c) u'v'O; etc. with u'=v'= 0.111. 

The axes X'Y'Z' of 1930, 352 bear the following relation to the axes abc 
of this description: a=Z', b= Y', c=X'. The kind of packing that prevails 
is illustrated by Figure 276a and b. 

Fro. 276a.—The unit cell of the structure of GeS 
projected on an a-face. The large circles are 
sulfur. 

Fig. 2766.—A packinj^ drawing of a with Ge and 
S atoms given their ionic sizes. In making 
these packing drawings it is sometimes better 
to show an atom at a height 1+x instead of 
the equivalent atom of height x. Thus in this 
figure the central sulfur atom is at 1—0.11 = 
0.89 
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(al) Earlier work described the low temperature modifications of HCl 
and HBr as tetragonal. The more recent experiments, however, make 
them orthorhombic pseudo-cubic with four molecules in the unit. The 
space group of low HBr is thought to be either or Yf. 

(am) Cubic HI is not cubic, as first stated, but tetragonal. It is said 
that its transitions do not involve atomic rearrangements. 

(an) A reexamination of KCN has failed to supply data indicating a 
unit larger than that of the four-molecule NaCl-like grouping. 

(ao) The NaTl siiperlattice, found for a number of alloys, contains 
eight molecules with atoms in the following special positions of : 

Ti: (8f) 
Na: (8g) HI; 00^; 0§0; iOO; fff; Uh Uh Ul 

(ap) Three additional crystals have been found to have the PbO (/) 
type of structure but with parameters and cells so different that other 
atomic relationships are produced. 

Of these substances LiOH is most like PbO. Lithium atoms are in 
(a) 000; 2^0, 011 groups are at (c) 0|u; |0u with u said to be 0.20. If 
u is really so small there is a surprisingly large separation (ca 3.5 A) be¬ 
tween the OH ions of adjacent layers. 

The other two crystals with this grouping, NH4HS and the 7-form of 
NH4Br, photographed at —100° C, have identical units. Since in most 
compounds the HS ion has practically the same size as the bromide ion, 
it might be expected that the parameters defining them would be little 
different. In view of this fact it will be interesting to learn from future 
work whether the unlike parameters found for the bromide and hydro¬ 
sulfide are both right. Expressing the atomic positions in the coordinates 
used for LiOH (above) and for PbO, u(HS)=:0.66 for NtlJIS* for T-NhLBr, 
u(Br) = 0.53. A drawing of the bromide is reproduced in Figure 277a 
and b for comparison with the PbO packing illustrated in Figure 176. 

Fig. 277a.—(left) The variant of the tetragonal PbO (/) arrangement provided by the 
7-form of NHiBr. Small circles are NH4 groups; the origin is in the NIL ion at A. 

Fig. 277b.—(right) A packing drawing of 7-NH4Br with the NH4 poup shown as 
the smaller sphere. It is evident that good packing results if, as in this drawing, 
the atoms are given their usual ionic sizes. 



STRUCTURES OF THE TYPE RX 21 

(aq) It is said that the structure of MgZn resembles that of MgZn2 

[see Chapter XII, {ab)\ with two magnesium atoms in place of zinc atoms 
and with c^ doubled in length. 

(ar) The molybdenum atom of the single MoC molecule in the unit 
is at the origin (000); the carbon atom is thought to be at HI. 

(as) The cell of braggite is reported to contain eight molecules and to 
have an arrangement based on The sample that was studied con¬ 
tained 20% Pd and 5% Ni. 

(at) The /3-form of CO, stable above 61.5° K, has the same structure 
as /3-nitrogen. If the arrangement found for )3-N2 is correct, this modifica¬ 
tion of CO, too, has rotating molecules in close-packed array. 

(au) A Fourier analysis has been made of the basal reflections from 
an unspecified type of SiC (1932, 205). 

(av) The tetragonal cell of the mineral cooperite, PtS, has been de¬ 
scribed as containing two molecules. Its atoms are thought to be in the 
following special positions of Dh,: Pt: (c) 0|0; |0|, S: (e) 00|; 00J. 

(aw) The unit cube of the modification of Agl stable above 146° C 
is supposed to contain two molecules. Iodine atoms are reported to be 
at 000; I-jH silver is described as occupying two of the 30 largest holes 
resulting from this iodine packing. Such an unusual structure needs fur¬ 
ther confirmation. 

(ax) Measurements of a^ for cubic MnO at low temperatures show 
that there is no change in structure around 160° K where an anomalous 
heat change occurs. At this point there is, however, a minimum in the 
cubic edge length. Magnetite, Fe304, behaves similarly. MriS and FeO 
likewise do not have different crystal structures above and below the 
temperatures at which they show thermal anomalies. Neither do they 
have a region in which they contract on warming; instead they show two 
different rates of thermal expansion. The data for these conclusions are 
given in Table II. 

Table II. Values of at Several Temperatures 

Temperature 

MnO 

for Compound 

Fe^Oi MnS FeO 

299° K 4.436 8.363 5.210 4.290 
200 — — — 4.286 
186 — — — 4.284 
160 4.409 8.357 5.204 4.283 
143 — — 5.204 — 
138 — — 5.197 — 
130 — 5.192 — 
114 4.416 8.363 — — 

104 4.419 8.363 — — 
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(ay) The compound SnAs is especially interesting in being an example 
of the NaCl grouping which is capable of “dissolving” both components, 
the As-rich limit being at 49% As, the Sn limit at 34.5% As. The pure 
compound has the lowest value of a^,. 

(02) The one-molecule rhombohedron of the form of the alkali hydro¬ 
sulfides stable at room temperatures is very different in shape from that 
found for AgCN. Atomic parameters are not known for any of these 
crystals. 



Chapter XIIA. Structures of the Type RX2 

(as) The rnonoclinic unit of Ag2Te has been said to contain three mol¬ 
ecules; this is improbable. A sample heated to 250® C and cooled in 
nitrogen showed no change in pattern. 

(at) The diffraction lines of BeF2, which were not very sharp, are 
reported to be those of a tetragonal high cristobalite-like (ae, bd) struc¬ 
ture containing eight molecules. 

(au) The atomic arrangement assigned to COS on the basis of low 
temperature powder photographs is developed from The atoms in 
its single molecule rhombohedron are on three-fold axes with the coordi¬ 
nates uuu. For C, u=0; for S, u'=0.336; for O, Ui=—O.I87. The result¬ 
ing interatomic distances within the molecule are C-O=1.10 A, C-S-1.96 
A; between different molecules 0-S=2.78 A. 

(av) The astonishingly large unit assigned to CU2S would contain 160 
molecules. 

(aw) Marcasite (FeS2) and loUingite (FeAs^) have been given smaller 
unit cells. These cells contain two molecules with atoms arranged ac¬ 
cording to Vjf. Iron atoms are in (a) 000; sulfur (or arsenic) atoms 
in (g) Ouv; Ouv; J~u, v+l; u+|, |-v. The axes, abc, of this 
description and X'Y'Z' of 1930, 352 are connected by the relation a=Z', 
b=X', c=Y'. For FeSa, u=0.203, v=0.375; for FeAsz, u'=0.175, v'= 
0.361; for the more recently studied phosphide FeP2, u"=0.16, v"=0.37. 
The grouping of marcasite, as typical of this structure, is illustrated in 
Figure 278a and b. It consists of open meshworks of iron atoms and 

Fig. 278a.—{left) The new 
atomic arrangement deduced 
for marcasite, FeS2, as pro¬ 
jected upon the a-face of its 
orthorhombic cell. The small 
circles are Fe atoms. 

Fig. 2785.—(rwht) A packing 
drawing of FeS* if Fe and S 
are shown with the radii of 
their neutral atoms. The line- 
shaded atoms are Fe. 

23 
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Table I. The Crystal Structures of the Compounds RX2 

Substance, symmetry and structure type Co or a References 

Ag2S (Acanthite) Ortho¬ 4.77 6.88 1931, 124, 345. 
rhombic bo= 6.92 

Ag2S (Argentite) Cubic CuaO O'), 4.90 1931, 124, 345. 
above 180°' c ihf) 

Ag2Te Monoclinic (as) 5.98 5.56 1932, 444. 
b„=6.31, /S=75“2' 

AI2AU Cubic CaFa (a) 6.00 1932, 292. 
AlCuMg Hexagonal MgZna (ab) 5.09 8.35 1934, 339. 
Au2Pb Cubic MgCua (g) 7.91 1934, 209a. 

AuSb2 Cubic FeSaCT) 6.647 1931, 326; 1932, 58; 
1933, 223. 

BaF2 Cubic CaFa (a) 6.187 1933, 422. 
BeaC Cubic CaFa (a) 4.33 1931,425; 1934,354b. 
Be2Cu Cubic MgCua (g) 5.94 1934, 339. 
BeFa Tetragonal (at) 6.60 6.74 1932, 70. 
BcaFe Hexagonal MgZna (ab) 4.22 6.83 1934, 339. 
CO2 Cubic CO, (g), 5.575 at -190° C 1931, 458, 459; 1934, 

(bg) 130, 130a. 
COS Hexagonal (au) 4.08 98°58' 1931, 457. 

at liquid air temp. 
CaFa Cubic CaFa (a) 5.451 1933, 422. 
Cala Hexagonal Cdia (c), 4.48 6.96 1933, 52. 

(hi) 
CdBra Hexagonal (bn) 1933, 43. 
CdCl(OH) Hexagonal (bh) 3.66 10.27 1934, 110. 
Cdl2 (c), (bi) 1932, 8; 1933, 174. 
C0CI2 Hexagonal* CdCl2 (e) 6.16 33°26' 1934, 95. 
CuFa Cubic CaFa (a) 5.406 1933, 122. 
CuaMg Cubic (g), (bs) 1934, 242. 
CU2O Cubic CuaO (j) 4.252 1931, 321, 322; 1932, 

483. 
CUaS Ortho¬ (av) 11.8 22.7 1930, 371. 

rhombic bo = =27.2 

FeAsa Ortho¬ FeAs2 (i), 2.85 5.92 1932, 83. 
rhombic (aw) bo= =5.25 

FeaB Tetragonal (0, (bp) 1930,116a; 1931,146. 
FeOCl Ortho¬ (bj) 3.75 3.3 1934, 84. 

rhombic bo = =7.95 
FePa Ortho¬ FeAsa (aiv) 2.725 5.657 1934, 173. 

rhombic bo = 4.975 
FeSa Cubic FeSa (f), 5.405 1932, 352. 

(bk) 

FeSa Ortho¬ FeAsa (i), 3.37 5.39 1931, 71. 
rhombic (aw) bo= =4.44 

GeOa Tetragonal t SnOa (b) 4.390 2.895 1932, 164. 
(“Insoluble’^ form) 

♦ For C0CI2, u«0.25. 
t Parameter u«0.3. 



STRUCTURES OF THE TYPE RX2 25 

Substance, symmetry and structure type or a References 

II2O Hexagonal (i), (W) 4.508 7.338 
at -66° C 

1933, 257; 1934, 16. 

US Cubic {al), (ax) 1931, 315, 456. 
H^Se Cubic (al), (ax) 1931, 315, 456. 
HgBr^ Ortho¬ 

rhombic 
(ay) 6.85 12.45 

b,=4.67 
1931, 461; 1932, 66. 

IIgCl2 Ortlio- 
rhombic 

(y), (bm) 5.963 4.324 
b„=12.735 

1932, 332; 1934, 316. 

HgF2 Cubic CaPs (a) 5.54 1933, 122. 

Hgl2 Ortho¬ 
rhombic 

HgBrz (ay) 7.32 13.76 
b^=4.674 

1934, 85. 

KBia Cubic CujMg (q) 9.501 1932, 501. 
K.C) Cubic CaF2 (a) 6.436 1934, 309. 

K‘S Culac CaF2 (a) 7.391 1934, 287, 309. 
K2Se Cu})ic CaF2 (a) 7.676 1934, 309. 
K,Te Cubic CaF2 (a) 8.152 1934, 309. 
U,0 Cubic CaF2 (a) 4.619 1934, 309. 
Li2S Cubic (^aF2 (a) 5.708 1934, 309. 
Li2Se Cubic CaF2 (a) 6.005 1934, 287, 309. 
Li.Tc Cubic CaF, (a) 6.504 1934, 287, 309. 
Mg2Gc Cubic CaF2 (a) 6.378 1933, 525. 

Mgl2 Hexagonal Cdl2 (c), 

(hi) 

4.14 6.88 1933, 52. 

MgNi2 Hexagonal MgZn2 (ah) 4.81 7.95 1934, 339. 
MgNiZn Cubic MgCuj (q) 6.96 1934, 339. 
Mg2Pb Cubic CaPj (a) 6.836 1933, 525. 
Mg28n Cubic CaFj (a) 6.765 1933, 525. 
MgZn2 Hexagonal (ab) 1934, 260. 
MnSa 
(Ilauerite) 

Cubic FeS^ (/) 6.097* 1932, 346, 411; 1933, 
417; 1934, 204, 346. 

M02C Hexagonal (az) 2.994 4.722 1932, 450. 
N2O Cubic CO, (g) 5.656 1931, 458, 459. 

NO2 Cubic (an), (ba) 1931, 170, 454, 455. 
NaaS Cubic CaF2 (a) 6.526 1934, 309. 
Na2Se Cubic CaF2 (a) 6.809 1934, 309. 
Na2Te Cubic CaF2 (a) 7.314 1934, 309. 
NdC2 Tetragonal CaC2 (k) 3.81 6.36 1931, 425. 
NiBra Hexagonal CdCb (e), 

(bn) 

6.46 33°20' 1934, 134. 

Nil2 Hexagonal CdCh (e) 6.92 32°40' 1934, 134. 
Ni(0H)2 Hexagonal Cdl2 (c) 3.114 4.617 1933, 87. 
OsS2 Cubic FeS2 (/) 5.6075± 

0.0006 
1934, 174. 

PbBra Ortho¬ 
rhombic 

PbBrz (2/), 
m 

1932, 332. 

PbFBr Tetragonal PbFBr (be) 4.18 7.59 1932, 331. 

PbCb Ortho¬ 
rhombic 

(y). (bb) 4.525 9.030 
b^*7.608 

1931, 302; 1932, 69. 

PbFCl 

*u«0.4012. 

Tetragonal (be) 4.09 7.21 1932, 330; 1933, 323; 
1934, 9. 
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Substance, symmetry and structure type 

a-PbF* Ortho¬ 
rhombic 

iy), m 

^.PbF, Cubic* CaFj (a) 

PbO, Tetragonal SnOs (6) 
PdF* Tetragonal SnO, (b) 

PrC2 Tetragonal CaCs (fc) 
PtAs2 Cubic FeSs if), 
(Sperrylite) (br) 

RuS2 (Laurite) Cubic FeS, if), 
(br) 

SaC2 Tetragonal CaG (fc) 
Si02 (a-Quartz, 
low) 

Hexagonal (1) 

Si02 (a-Cris- Ortho¬ (bg) 
tobalite, low) rhombic 

Si02 (/3>Cris- 
tobalite, high) 

Cubic (ae), (bd) 

SrCa Tetragonal CaC, (k) 

SrFi Cubic CaFj (0) 
Ta2C Hexagonal (az) 

YC, Hexagonal (bo) 

Zn(OH)2 Hexagonal Cdlj (c), 

(?) (be) 

Zn(OH)2 Ortho¬ 
rhombic 

(ai), (be) 

ZrW2 Cubic CuaMg (q) 

Co or a References 

3.80 7.61 1932, 269; 1933, 422. 

ho =6.41 
5.942± 1933, 422. 
0.002 
4.931 3.367 1932, 120. 
4.93 3.38 1931, 100. 
3.85 6.41 1931, 425. 

1932, 17. 

5.59 1932, 17. 

3.75 6.28 1931, 425. 
4.9029 5.3933 1930, 375; 1933, 62, 

232, 277; 1934, 121a. 

7.00 7.00 1932, 25. 

ho =7.00 

1932, 24. 

4.11t 6.68 1930, 299. 
5.784 1933, 422. 
3.091 4.93 1934, 42. 
3.79 6.58 1931, 425. 
3.14 ca5.12 1932, 146a. 

8.53 4.92 1933, 104. 
b =5.16 

7.61 1933, 95. 

* Transition between 220°-280® C. 
t ao=»5.81 A as given in book, p. 239, applies to a larger diagonal cell. 

sulfur pairs layered normal to the a-axes. The atomic contacts are per¬ 
fect if iron and sulfur are given their radii as neutral atoms. 

{ax) The patterns of H2S and H2Se indicate that the sulfur and 
selenium atoms are in face-centered array; nothing can of course be told 
about the hydrogen positions. 

{ay) The four molecules in the unit of HgBr2 are arranged according 
to the space group Cfy. All atoms are in special positions (a) uOv; U; 0, 
v+l; u+i, v; |-u, v+f, with the parameters: for Hg, u=0.334, 
v=0; for Br', u'-O.OSe, v'=0.132, for Br", u"=0.389, v"==0.368. As Fig¬ 
ure 279 shows, this arrangement is a typical layer-like structure, contact 
between the layers being maintained through bromine atoms. If the 
atoms are given their usual ionic sizes, as in the packing drawing, excellent 
contacts result. 
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Yellow mercuric iodide apparently has this HgBr2 grouping. 
(az) The two molybdenum atoms in the unit cell of M02C are said to 

be at f||; it is thought that the carbon atom may be at the origin 
000. A tantalum carbide, Ta2C, has the same hexagonal close-packing 
of its metal atoms; like W2C it has a second modification. 

Fig. 279a.—(left) The 
layer structure of HgBr2 

projected on the b-face 
of its orthorhombic unit. 
The large circles are Br. 

Fig. 2796.—(right) A 
packing drawing of 
HgBra with the atoms 
having their ionic sizes. 

(ba) The unit cube of solid NO2 contains 12 molecules. Two con¬ 
flicting structure types have been proposed using the same data (1931, 
454). In one of these, based on T®, the nitrogen atoms are in (12c) uO^; 
etc. with u=0.403, the oxygen atoms in general positions xyz; etc. with 
x=0.178, y=0.25, z=0.403. This gives NO2 molecules with an N-0 separa¬ 
tion of 1.38 A. The other discussion proceeds on the assumption that 
the solid ought to show N2O4 molecules. It is pointed out (1931, 170) 
that this can result if the space group is T® with oxygen atoms in general 
positions and nitrogen atoms in (12a) or (12b). The atomic positions 
have not been determined for such an arrangement but it is considered 
that the evidence favors planar molecules. 

(bb) In the structures found for PbBr2 and PbCl2 all the atoms are in 
special positions (c) of : Ouv; u, v; 0, u+^, ^-v; u, v+i- 
In PbBrs, u(Pb)=0.0l6, v(Pb)=0.087; for Br', u'=0.61, v'=0.075, for 
Br", u"=0.23, v"=—0.17. The different parameters given to the atoms 
in PbCl2 are to be attributed to the choice of another origin. These 
parameters are: for Pb, u=0.254, v==0.095; for Cl', u'=0.65, v'~0.07, for 
Cl", u"=0.55, v"=0.67. The extreme layer-like nature of the structure 
possessed by both salts is illustrated by Figure 280; in b the atoms have 
been drawn with their customary ionic sizes. The packing is far less 
perfect than that found for HgBr2 (Figure 279); but very possibly more 
accurate intensity data upon these lead salts would alter the chosen 
parameters enough to give them better ionic contacts. 
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Fig. 280a.—(le/l) An a-face projection of the PbBr2 arrangement. The small circles 
are the Pb atoms. All atoms are in layers normal to the a-axis. 

Fig. 2806.—{right) A packing drawing of PbBr2 with the atoms given their ionic sizes. 

(6c) Photographic data have been used to show that the atoms in the 
two-molecule units of PbFBr and PbFCl are in the following special posi¬ 
tions of Djh: 

Pb: (c) 0|u;-|0u, Br(orCl): (c) 0§v; |0v, F: (a) 000. 

For PbFBr, u=0.195, v=0,65; for PbFCl, u'=0.20, v'=0.C5 (Figure 281). 
The mineral matlockite is not Pb2Cl20 but PbFCl with the structure 

described above. 

Fig. 281a.—{left) The unit cell of the 
PbFCl arrangement projected upon 
one of its tetragonal n-faces. The 
atom at the origin is F. The largest 
circles represent Cl atoms, the small¬ 
est Pb atoms. 

Fig. 2816.—{right) A packing drawing 
of PbFCl if the atoms have their 
ionic sizes. The line-shaded spheres 
are Pb ions. 

{bd) It is said that certain faint lines occur in the pattern of high 
cristobalite, Si02, which are not predicted by the holohedral structure (ae). 
A tetartohedral variant of this arrangement has accordingly been proposed 
in which the silicon atoms are in two sets of special positions (4f) of T*: 
uuu; u+l, ^-u, Q; u, u-f J, ^-u; u, u+| with u-=0.256 and u'= -O.OOs. 
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The oxygen atoms are in another set of (4f) with u"= 0.126 and in gen¬ 
eral positions xyz; etc. (see p. 2G7 of book) with x=y=0.66, z=0.06. The 
difference between this grouping and (ae) may be seen by comparing 
Figure 282 with Figure 194a. If the observed faint lines really are due 
to high cristobalite then this distortion of (ae), or a similar one, is neces¬ 
sary, but the proposed parameters do not provide better agreement with 
the strong lines than that given by (ae) itself. It is clear that more quan¬ 
titative experimental data are required for an accurate placing of the atoms. 

Fio 282 —The structure recently pro¬ 
posed for high iii) cristoVialite (cf 
book, Figure 194c7) The small cir¬ 
cles arc 8i atoms 

{be) The dimensions previously determined (1927, 104) do not refer to 
the orthorhombic form of Zn(OH)2 that has recently been analyzed using 
quantitative spectrometric data. The unit of the table, m which the a 
and b-axes of the original crystallographic description have been inter¬ 
changed, contains four molecules. All its atoms are in general positions 
of V^: xyz; x+i, z; x, y-f |, \-z] |-x, y, z-f|, with the parameters 
of Table II. In this structure (Figure 283) each zinc atom is at the center 

Fig 283a.—{left) The structure 
of orthorhombic Zn(OH)2 pro¬ 
jected upon its c-face The 
large circles are OH groups. 

Fig 2836 —(nght) The packing 
of the OH“ (large) and 
ions in orthorhombic Zn(OH)2. 

Table II. Parameters of the Atoms in Zn(OH)t 

Atom X y z 

Zn 0.125 0.100 0.176 

0(1) .025 .430 .086 

0(2) .325 .125 .370 
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of a distorted tetrahedron of (OH) groups; each hydroxyl belongs to two 
such Zn(OH)4 sphenoids. The result is a tetrahedral network somewhat 
resembling those found for the various forms of silica. 

A hexagonal modification of Zn(OH)2 has been said to exist with a 
Cdl2 (c) structure (1932, 146a). The available experimental evidence is 
not, however, satisfactory. 

(6/) Above 180° C Ag2S is cubic with the CU2O {j) structure; below 
this temperature the observed pattern is variously described as ortho¬ 
rhombic, like acanthite (1931, 124) and as a mixture of the acanthite and 
cubic patterns (1931, 345). Four molecules are contained in the acanthite 
unit described in Table I. 

{hg) A reinvestigation of solid CO2 leads, as before, to the pyrite-like 
arrangement (/) with u=0.1l6. This gives a C-0 distance of 1.13 A. 
Recent measurements of a^ between 20° and 114° K can be expressed by 
the equation ao= 5.540+(4.679xlO~®)T2. 

(bh) The two-molecule cell of CdCl(OH) has an atomic arrangement 
based on Cgv- Cadmium and chlorine are in special positions (b) |f\i; 

h u+l with u (Cd)==0 and u'(Cl) = 0.337. Hydroxyl groups are in 
(a) OOv; 0, 0, v+i with v= 0.100. This gives rise to the interionic con¬ 
tacts pictured in Figure 284a, b and c. 

Fig. 284o.—(lefi) A basal projection of the Cd(OH)Cl arrangement. Cd, (OH) and 
Cl are represented by circles of increasing size. Letters refer to corresponding atoms 
in Figures 2846 and 284c. 

Fig. 2846.—{center) A diagonal (11*0) face projection of Cd(OH)Cl. 

Fig. 284c.—{right) A packing drawing of 6 with the atoms of Cd(OH)Cl having their 
ionic sizes. 

Qn) Lines have been found on powder and rotation photographs of 
Cdl2 which indicate that the c-axis of the one-molecule cell should be 
doubled. It has been concluded that the atoms in this two-molecule cell 
are in the positions: Cd: 000; ffi I: Ifu; flu; 0, 0, u+J; f, J~u. It 
would seem to be proved that under certain circumstances Cdl2 can crystal¬ 
lize with this larger unit, but it is not clear whether it always has such a 
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complicated structure and the existing data are insufficient to establish 
the new atomic arrangement. Additional work is especially needed since 
the original one-molecule structure (c) has been found to satisfy the dif¬ 
fraction data from a large number of different compounds. The additional 
lines calling for a larger unit have not been recorded from these other 
Cdl2“like crystals: some should show them clearly, others would not be 
expected to do so because of the relative scattering powers of their atoms. 

(bj) It has been proposed that the atoms in the two-molecule unit of 
FeOCl are arranged according to the demands of the space group . 
Oxygen and chlorine are placed in (a) OuO; ^u§ [interchange of Y and Z 
from 1930, 352] and iron in (b) Ov^; |v0 with u (0) =—0.083, u(Cl) = 
0.305, v = 0.097. So many crystals have in the past been incorrectly as¬ 
signed to Vh that data far more complete and convincing than those yet 
published for FeOCl are highly desirable. It is also probable that the 
true atomic arrangement will be found to provide interatomic distances 
that differ somewhat from those of the structure outlined above. 

(bk) A Fourier analysis has been made of quantitative intensity data 
from crystals of pyrite (FeS2). This leads to a parameter u(S) = 0.386. 
The resulting atomic separations are S-S=2.14 A, S-Fe=2.26 A. 

(bl) Within the limits of experimental error (ca±0.004) the dimensions 
of ice composed of heavy hydrogen arc identical with those of ordinary 
ice. Structures have been proposed for ice which assign positions to its 
hydrogen atoms (see 1933, 257); the results of X-ray determinations of 
course have nothing to say about such speculations. 

(bni) From photographic data HgCb has recently been given a struc¬ 
ture which is considered to be essentially molecular. Like PbBr2 and 
PbCL (66), all atoms are in special positions (c) of Ouv; u, v; 
0, u+i, I, u, v+J, The parameters found for them are u(Hg)= 
0.376, v=0.053; u'(Cl') = 0.517, v'=0.375; u"(Cl") = 0.742, v"=0.778. The 

Fia. 2Sid,—{left) The 
structure found for 
HgCb projected upon 
an a-face. Large circles 
are Cl atoms. 

Fia. 284c.—{right) The 
type of packing that 
prevails in the HgCh 
arrangement if atoms 
are given their ionic 
radii. In this drawing 
the atomic layer at i in 
d is on top. 
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type of packing provided by this arrangement if the atoms have their 
usual ionic sizes is illustrated in Figure 284d and e. The nearest approach 
of Hg and Cl atoms is 2.25 A; Cl-Cl is 3.4 A. 

(6n) NiBr2 obtained by sublimation has the CdCU arrangement {e) 
with u(Br) = 0.255. The compound made by dehydration, by driving NHs 
from the hexammoniate or by recrystallization from alcohol is a Wechsel- 
struktur/^ The pattern for this gives ao=2.11 A, Cp = 6.08 A, a hexagonal 
cell which would contain only a third of a molecule. It has been proposed 
that these results can be interpreted in terms of an intimate twinning of 
CdCU and Cdl2 structures—a few layers of each together. CdBr2 has 
been found to give a similar Wechselstruktur” with ao=2.30 A, c^ = 
6.23 A; Nil2 on the other hand seems always to have the CdCb arrange¬ 
ment. 

{ho) The structure of YC2 is different from that of the other carbides 
studied. It is supposed to be hexagonal with a two-molecule cell. 

(6p) A new structure has been proposed for Fe2B which differs from 
the previous one {t) in the parameters assigned to the Fe atoms at (i) 
of Vd and in the positions thought probable for the boron atoms. Borons 
are placed at (c) ^00; 0|0; instead of (a) and (b), and for Fe, 
u=| and v=i instead of i (Figure 285). If v=| is exactly correct the 
structure is identical with the one found for CuAb (n), with a change of 
origin to OfO. 

Fig. 285a.—(left) A basal projection of the new arrangement proposed for FexB. The 
large circles are the Fe atoms. 

Fig. 2855.—(right) A packing drawing of a if the Fe atoms are assumed to be neutral 
and if the (line-shaded) boron is given a size probable for its neutral atoms. 

{bq) It is suggested that the unit cell of the room temperature (low) 
modification of cristobalite contains eight molecules and that the atomic 
arrangement, based on V^, is a distortion of that of high cristobalite (com¬ 
pare Figure 286 with Figures 282 and 194a). All atoms are in general 
positions: xyz; x+i, J-y, 2; x, y*f |-z; i-x, y, z-t-^. Parameters which 
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are considered approximately correct are listed in Table III. As in the 

case of /3-cristobalite, more quantitative data are needed to fix these 

atomic positions with any certainty. 

Fi«. 286.—A r,-face projection of the 
.structure as.signed to low tempera¬ 
ture (a) cristohalite, SiOj. The small 
circles are Si atoms. 

Table III. Parameters Given to the Atoms in Low Cristoi 

Atom X y z 

0(1) 0.67 0.65 0.14 
0(2) .06 .64 .58 
0(3) .625 .06 .625 
0(4) .125 .21 .125 
Si(l) ,25 .33 .25 
Si(2) .08 .00 .00 

(br) The mineral laurite has been shown to be RuSj with the same 

pyrite structure (/) previously established for the synthetic compound. 

The sulfur parameter is 0.39<u <0.395. 

A further study of speryllite, also isomorphous with pyrite, has shown 

that 0.385 <u<0.390. 

(bs) The compound Cu2Mg has only a narrow range of homogeneity. 

On the a-side a^, varies from 7.0087 A to 7.0185 A with annealing tempera¬ 

tures between 600® C and 400° C; two samples in the P+y region annealed 

at 500® C and 380° C gave a„=7.0518 A and a„= 7.0343 A. 



Chapter XIIIA. Structures of the Type R2X3 

(m) A complex arrangement which includes a place for one sodium 

atom per cell has been proposed for /3-AI2O3. Based on Dgh it has atoms 

in the following positions: 

1 Na+1 Al: (a) 000; 00^- 

4 Al: (f) i Hu; i |-u with u=0.022 

3 Al: f of positions of (f) with u'= 0.178, 3 Al: same with u"=—0.178 

12 Al: (k) uuv; etc. (see 1930, 352, p. 1G9) with u= |, v=--0.106 

12 0: (k) UiUiVi; etc. with Ui=|, Vi=0.05 

12 0: (k) U2U2V2; etc. with 112= V2=0.144 

4 0: (f) liua; etc. with 113=-0.05 

4 0: (e) OOw; OOw; 0, 0, §-w; 0, 0, w+| with w==0.144 

I 0: 1§ of two equivalent positions (c) vlJ; Hf, 
I 0: same for (d) §||; 

This distribution of atoms among the equivalent positions of the space 

group is so bizarre that a confirmation of the structure is much to be 

desired. 

(n) The atomic arrangement in 7-AI2O3 has not yet been satisfactorily 

established. 

Table I. Parameters Assigned to the Atoms in SbjS. 

Atom u V 

Sb(l) 0.328 0.031 

Sb(2) -.039 -.149 

S(l) .883 .047 

8(2) -.439 -.125 

8(3) .194 .208 

(0) Spectral photographs of stibnite indicate that the four Sb2S3 mol¬ 

ecules in its orthorhombic unit are arranged according to V“. All atoms 

are said to be in special positions (c) uv?; uv|; |-u, v-|-|, J; u+|, ^-v, 

f with the parameters of Table I. If abc are the axes of this description 
and X'Y'Z' are those of 1930, 352: a=Z', b=Y', c=X', the origin being 

moved to a center of symmetry. Within the limit of experimental error 

the Bi parameters in BiaSs are the same as those of Sb. 
34 
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This structure consists of chains of the composition (Sb2S3)n- If the 
atoms have their uncharged radii, there is good contact within these chains 
(Figure 287). Whether the atoms are charged or neutral the atoms in 
adjacent chains are unexpectedly far apart. In view of this fact it will 
be important to see whether future work confirms this arrangement. 

Fig. 287a.—{lejt) The arrangement proposed for stibnite, Sb2S3, projected on its 
c-face. The large circles are Sb atoms. 

Fig. 287?>.—(right) A packing drawing of a if Sb and S are given their neutral radii. 
The small spheres thus are the sulfur atoms. Packing is not improved by assuming 
that the atoms are charged, 

(p) A reexamination of Mg3P2 shows that its correct structure is iden¬ 
tical with that of TI2O3 (6). The selected parameters are the same as 
those found for bixbyite, (Fe, Mn)203. This atomic arrangement also 
prevails for Be3P2, Be3N2, Mg3N2 and a-Ca3N2. 

It is said that Zn3P2, Cd3P2 and Zn3As2, though likewise possessed of 
16-molecule cubic units, have different structures. 

The earlier choice of a 12-molecule cube for MgsNa was due to a faulty 
estimate of its density. 

Probably the small unit previously determined for Cd3As2 is equally 
wrong. 

{q) The monoclinic unit assigned to Cd3Sb2 contains four molecules. 
(r) The structure first suggested for the magnetic 7-Fe203 was the 

same as that of magnetite [(A;) of Chapter XVI] with four oxygen atoms 
added. It has recently been shown that if these additional atoms are 
put in either of the two sets of positions originally proposed, the observed 
intensities cannot be explained. Better intensity agreement can be ob¬ 
tained by placing these atoms in (4g) uuu; etc. with u=|. The smallest 
0-0 separations in this structure are greater than those existing in the 
previous arrangements; nevertheless they still have the improbably small 
value 2.14 A. 

(s) Eight molecules of Fe3W2 are contained in the large cell found for 
the e-phase of the Fe-W system. 
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Table II. The Ceystal Stbuctubes of the Compounds R2X3 

Substance, symmetry and structure type Cp or a References 

Al2Mg3 Cubic it) 10.54 1934, 340. 

a-Al208 Hexagonal FezOs (a) 5.13 55°6' 1930, 246b. 

^-■Al203 Hexagonal (/), (m) 5.56 22.55 1931, 56. 

7-AI2O3 Cubic (n) 7.90 1932, 18, 76. 

AB20s Cubic AsaOs (c) 11.0457± 1932, 290. 
0.0002 

B03N2 Cubic TlaOa (b), 

ip) 

8.134 1933, 443. 

Be3P2 Cubic TIA (6), 
(P) 

10.15 1933, 443. 

Bi2S3 Ortho¬ Sb-aS, (fc). 11.13 3.97 1933, 207. 

(Bismuthinite) rhombic (0) bo = 11.27 

a-Ca3N2 Cubic TUO3 (6), 

ip) 

11.40 1933, 137, 443. 

CdaAs2 Cubic ip) 12.58 (?) 

CdsPa Cubic ip) 12.26 1933, 443. 

Cd3Sb2 Monoclinic in) 7.20 6.16 1933, 167. 

b =13.51, ^=100‘’14' 

Cr3C2 Ortho¬ 
rhombic 

iff) 1931, 468. 

Cr208 Hexagonal FsaOj (a) 5.38 54"50' 1930, 246b. 

FeaOa Hexagonal FeaOs (a) 5.4135 55^^17' 1930, 246b; 1932, 75; 

(Hematite) 1933, 247; 1934, 34. 

Fe203 
(Magnetic) 

Cubic ih), (r) 1931, 117, 445. 

Fe3W2 (e-phase) Hexagonal is) 4.738 25.726 1931, 343. 

Mg3As2 Cubic TlaOa (6), 

ip) 

12.33 1933, 443, 524. 

MgaBiz Hexagonal LaaOa (c) 4.666 7.401 1933, 524. 
MgsN2 Cubic TUOa (6), 

(*■), ip) 

9.95 1932, 185; 1933, 443. 

Mg3P2 Cubic TlaO, (6), 

ip) 

12.03 1933, 443, 524. 

Mg3Sb2 Hexagonal* LaaOs (c) 4.573 7.229 1933, 524. 
Sb2S3 (Stibnite) Ortho¬ SbaS, (k), 11.20 3.83 1933, 207. 

rhombic io) 11.28 
Zn3As2 Cubic ip) 11.74 1933, 443. 
Zn3p2 Cubic ip) 11.42 1933, 443. 

* The parameters are the same as those of LajOj. 

(t) The intermetallic phase Al2Mg3 gives the cubic pattern of a-Mn. 

It is therefore concluded that the true composition is Mgi7Ali2 with two 

molecules per cell. In such a structure Mg atoms presumably are in (2a), 

(8a) and (24g) (book, p. 270) with u=0.356, v=0.042; the A1 atoms, also 
in (24g), have u'= 0.089, v'=0.278. 



Chapter XIVA. Structures of the Type RX3, of 
Higher Compounds RmXn and of New 

Compounds of the Type Rx(MX2)y 

The Compounds R^Xq 

(al) AIF3 was earlier described as hexagonal with a unit containing 
three molecules. An atomic arrangement more recently found for it is 
rhombohedral with two molecules in the unit (corresponding to a six- 

molecule hexagonal cell). The structure, based on Dj, has atoms in the 

special positions: 

Al: (c) uuu; uuti with 11=0.237 

F: (d) UiiliO; UiOui; OuiUi with Ui=0.430 

F: (e) u'Q'-J; u'^u';-2u'u'with u'=0.070. 

(am) Arsine, ASH3, and phosphine, PH3, when solidified give patterns 

corresponding to four-molecule cubic cells. They are said to be face- 

centered but a further study of them is desirable to be sure that they do 
not have structures like ammonia (t). 

(an) A previous determination has given ASI3, Sbis and Bils hexagonal 

unit cells containing six molecules. Atomic positions, said to be developed 

from CJ, were stated for Bils [see (6)]. More recent work on Asia has 

shown that its space group really is Ch. The atoms in the two-molecule 
rhombohedron that is its true unit have the coordinates: 

As: (c) ±(uuu) withu=| 

I: (f) db(xyz); zt(zxy); dz(yzx) with x=0.42, y=0.08, z=0.75. 

If, as is presumably the case, Sbla and Bila are isomorphous with Asia 
then their two-molecule rhombohedral units will have the dimensions of 
Table 1. . 

Though the space groups and the unit cell suggested for CrBra are 
hexagonal, it is reported to be isomorphous with Bila. Its true unit is 
thus without doubt rhombohedral, the dimensions being those stated in 
Table I. 

37 
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Table I. The Crystal Structures op the Compounds RmX, 

Substance, symmetry and structure type or a References 

Compounds RX3 

AIF, Hexagonal (i), (al) 

AlsFe Ortho¬ 
rhombic 

(hs) 

AsH, Cubic (am) 

Asl, Hexagonal Asl, (6), 

(an) 

Bil, Hexagonal Asia (h), 

(an) 

CaPbs Cubic AuCua (e), 

(ao) 

CaSnj Cubic AuCua (e), 

(ao) 

CaTls Cubic AuCua (e), 
(ao) 

(Ce, La, . . .)Fi 
(Tysonite) 

Hexagonal (ap) 

CeMga Cubic LaMgs (be) 

CePb, Cubic AuCua (e), 

(ao) 

CeSnj Cubic AuCus (e), 

(ao) 

CoFs Hexagonal (aq) 

CrBr, Hexagonal Asia (6), 
(an) 

CrO, Ortho¬ 

rhombic (?) 
(as) 

FesC Ortho¬ 

rhombic 

(0), (av) 

FeCls Hexagonal AlFa (?) 

(al) 

FeFs Hexagonal (aq) 

KCNS Ortho¬ 

rhombic 

(aw) 

LaMga Cubic LaMga (be) 

LaPbj Cubic AuCua (e), 

(ao) 

LaSni Cubic AuCua (e), 

(ao) 

LiCd, (at) 

MoO* Ortho¬ (ax) 

rhombic 

NH. Cubic (t) 
NaCNO Hexagonal CsChl (d) 
NaJSr, Hexagonal. CsClJ (d), 

(ar) 

6.029 58‘’31' 1931, 256; 1933, 255. 

11.87 (?) 15.80 1933, 334; 1934, 313, 

K- =8.09 313a. 
6.40 at -170° C 1930, 429. 
8.25 6r20' 1931, 205, 206. 

8.13 54°50' 

4.891 1933, 529. 

4.732 1933, 529. 

4.794 1933, 529. 

1931, 335. 

7.373 1934, 234. 
4.864 1933, 529. 

4.711 1933, 529. 

3.664 87°20' 1931, 100. 
7.05 62°36' 1932, 68. 

8.50 5.72 1931, 53, 487. 

bo =4.73 

4.626 6.633 1931, 343; 1932, 474. 

bo= =5.107 

6.69 52°30' 1932, 481. 

3.75e 88°14' 1931, 100, 256; 1933, 

511. 
6.66 6.635 1933, 261; 1934, 38. 

bo- 7.58 

7.478 1934, 234. 

4.893 1933, 386. 

4.772 1933, 386. 

1933, 27; 1934, 310. 

3.954 3.694 1931, 53, 484, 485. 

b„=13.825 

5.08 at - 

0
 

0
 
0

 1930, 429. 

5.45 38°16' 1934, 287. 

5.46 38°48' 1934, 287. 
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Substance, symmetry and structure type Oo or a References 

NaPb, Cubic AuCu, (e), 

(ao) 

4.873 1931, 505. 

PH, Cubic {am) 6.31 at -170° C 1930, 429. 

PI3 Hexagonal {(ly) 7.11 7.42 1933, 64. 

PdF, Hexagonal (aq) 3.75, 84°29' 1931, 100. 

PrMg, Cubic LaMg, (be) 7.373 1934, 234. 

RbN, Fetragonal KN, (c) 1931, 72. 

RcO, Cubic (az) 3.734 1931, 44; 1932, 308: 

1933, 45. 
RhF, Hexagonal (aq) 3.62 84°48' 1931, 100. 
Sbl, Hexagonal Asl, (b), 

(an) 

8.18 54°14' 

SrPb, Tetragonal (ba) 4.955 5.025 1933, 529. 
TiAI, Tetragonal (au) 5.424 8.574 1931, 114. 
TICNS Ortho¬ (aw) 6.80 6.78 1934, 38, 256. 

rhombic b,=7.52 
WO, Triclinic ibb) 7.28 3.82 1931, 53. 

b^=7.48» 

Compounds RX4 

CI4 Cubic (M) 9.14 1931, 164. 

Cr4C Cubic (x) 1931, 468. 

Fe(CO)4 Monoclinic (be) 13.00 11.41 

b^*11.41, )3-85°35' 

1931, 62. 

HfF4 Monoclinic (bt) 9.45 7.62 

b^-9.84, /3=94°29' 

1934, 240a. 

LaAU Tetragonal m 13.2 10.2 1933, 385. 
SiFg Cubic (bg) 1930, 218a. 

Sil4 Cubic Snl^ (aa) 11.986 1931, 163. 
TiBr4 Cubic Snii (ao) 11.250 1932, 194. 
Til4 Cubic Snij (aa) 12.002 1932, 194. 
ZrF, Monoclinic (bl) 9.46 7.64 

b„-9.87, /3=94°30' 

1934, 240a. 

Compounds RX5 
MgZiii Hexagonal m 9.92 16.48 1933, 465. 

Compounds RX5 

BaB, Cubic ThB< (ac). 4.28 1931, 425; 1932, 6, 

(bj) 428. 
BeC (?) Hexagonal (bu) 5.62 12.12 1934, 338. 
CaB# Cubic ThB. (bj) 4.145 1931, 425; 1932, 6, 

428; 1934, 207. 
CeB. Cubic ThB, (bj) 4.129 1931, 425; 1932, 6, 

428. 
FrB, Cubic ThBe (bj) 4.102 1932, U 428. 
GdBe Cubic ThB. (bj) 4.12 1932, 6. 
LaBfi Cubic ThB. (bj) 4.145 1931, 425; 1932, 6, 

428. 

* All angles close to 90®. 
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Substance, symmetry and structure type «o c^ or a References 

NdBe Cubic ThB. {bj) 4.118 1932, 6, 428. 
PrBe Cubic ThB, {bj) 4.121 1932, 428. 
SrBe Cubic ThBe {bj) 4.19 1931, 425; 1932, 

428. 
Te(OH)6 Cubic {ah), {hi) 1934, 88. 
Te(OH)6 Monoclinic •- (hi) 5.54 9.74 1934, 88. 
(second form) b„=9.30, ^ = 104°30' 

ThBe Cubic ThBe {bj) 4.15 1932, 6. 
YB« Cubic ThBe {bj) 4.07 1932, 6. 
YtBe Cubic ThB. {bj) 4.13 1932, 6. 

Higher Compounds RXj, 

CsCs Hexagonal KCs {bk) 4.94 23.76 1932, 405. 
KCs Hexagonal KCe {bk) 4.94 21.34 1932, 405. 
RbCs Hexagonal KCe {bk) 4.94 22.73 1932, 405. 
CsCie Hexagonal KC,. {bl) 4.94 18.51 1932, 405. 
KCi6 Hexagonal KC,. {bl) 4.94 17.45 1932, 405. 
RbCie Hexagonal KCi. {bl) 4.94 17.95 1932, 405. 

Miscellaneous Compounds RmXn 

AgsHg* Cubic (bn) 10.09 1933, 494. 
AUCs Hexagonal (bv) 8.53 22^^28' 1934, 354c. 
BioHi4 Ortho¬ (bo) 14.46 5.69 1931, 304. 

rhombic 20.85 
CO4S3 Cubic 9.91 1932, 90. 
Cr 7O3 Hexagonal (af) 13.98 4.62 1931, 468. 
CusCdg Cubic CueZng (ad) 1931, 51. 
CuifiS^ Cubic (bq) 9.694 1934, 179. 
OuaZllg Cubic OueZue (ad) 1931, 51. 
NftaiPbg Cubic ibp) 13.27 1933, 451. 
SbaTb Cubic (bm) 11.59 1934, 180. 
WAi Tetragonal (br) 7.56 3.735 1934. 74. 

Table II. New Crystal Structures of the Compounds Rx(MX2)y 

Substance, symmetry and structure type Co Co or a References 
AgClOg Pseudo- (ca) 

tetragonal 
12.17 6.69 1931, 282. 

AgSbSz 

(Miargyrite) 
Monoclinic (c5) 13.17 12.82 

bo=4.39, /3=98°37i' 
1932, 219. 

(Ag, Cu)2Sb2S4 Ortho- (cc) 7.50 11.95 1934, 89. 
(Polybasite) rhombic (?) b„=12.99 

CaB204 Ortho- (cd) 

rhombic 
6.19 4.28 

b„=11.60 
1931, 494; 1932, 494. 

Ca(C102)2 Pseudo- (ce) 

cubic 
5.80 1931, 282. 

CuBiSs 43rthor (cf) 6,12 14.51 1932, 219; 1933, 206. 
(Emplectite) rhombic^ ‘ bo-3.89 
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Substance^ symmetry and structure type Oo Cp or a References 

Cu2Fe204 Hexagonal 6.06 2.82 1934, 281. 

CuFeSa Tetragonal [XI, (aa)], 5.24 10.30 1932, 359. 

(Chalcopyritc) {eg) 
CuSbSa Ortho¬ (cf) 6.01 14.46 1932, 219; 1933, 206. 

(Wolfsbergite) rhombic bo =3.78 

KAg(CN)2 Hexagonal (ch) 7.384 17.55 1933, 199. 

IC2FC2O4 Cubic (ci) 7.958 1933, 197. 

KFeSa Hexagonal (ej) 13.03 5.40 1933, 329. 

Li2Fe204 Cubic (ck) 4.141 1931, 362. 

NH4CIO2 Tetragonal (cl) 6.30 3.73 1931, 282. 

NH4HF2 Ortho¬ (cm) 8.33 3.68 1932, 196; 1933, 349. 

rhombic 
bo =8.14 

NH4H2PO2 Ortho¬ (cr) 3.98 11.47 1934, 307. 
rhombic bo =7.57 

Na2Fe204 Hexagonal (cn) 5.59 35°20' 1933, 149. 

NaNOa Ortho¬ (co) 3.55 5.37 1931, 504. 

rhombic bo =5.56 

Pb(C102)2 Pseudo- (ep) 4.14 6.25 1931, 282. 
tetragonal 

PbFe204 Cubic 7.81 1933, 197. 

TlAsSa Monoclinic (eg) 15.02 6.10 1932, 219. 

(Lorandite) h ̂ -11.31, ^ = 127°45' 

(ao) Several intermetallic compounds, of which NaPbj is typical, have 
been found to have the simple cubic arrangement (e) which occurs as a 
superlattice in alloys of copper with gold, platinum and palladium. For 
NaPbs the atomic coordinates are: Na: (la) 000, Pb: (3a) O-JI; ^|0; ^0| 
(Figure 288a and b). 

Fig. 288a.—(left) A cube face 
projection of the simple NaPbs 
grouping. Na atoms are at 
the origin. 

Fig. 2886.—(right) A packing 
drawing of a with the atoms 
having the (neutral) radii 
found in the metals them¬ 
selves. Na atoms are hne- 
shaded. 

(ap) A new structure has been suggested for tysonite (Ce, La,.. 0^3= 
R'Fa. It has atoms of its six-molecule unit in the following special posi¬ 
tions of Dgt: 

R: (g) uuO; etc. (1930, 352, p. 168) with u=ca 0.34 
F: (a) 000; OOJ, at (c) HO; IH; 13O; Hi and at (k) u'u'v; etc. 

with u'=ca I and v=ca 0.175. 

This arrangement is not definitely e^blished by the existing data. 
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{aq) The data on FeFa are conflicting. According to 1931, 256 it is 
hexagonal with a three-molecule unit. The analysis of 1931, 100 gives it 
a one-molecule rhombohedron having the dimensions recorded in Table I. 
A recent discussion suggests that neither of these is correct but that the 
arrangement really resembles that of WO3 (66). Whatever structure may 
ultimately be established for FeFa, it probably is possessed by C0F3, 
RhFs and Pdl^'s as well. The one-molecule rhombohedral units, or pseudo¬ 
units, of these substances are listed in Table I. 

(ar) The cell dimensions of NaN3 have been determined at 200° C 
as well as at room temperature. At the higher temperature the edge 
length is unchanged, ao = 5.45 A; the rhombohedral angle, however, has 
become slightly less acute, a=39°14'. The parameter u for nitrogen has 
not been established for any of the sodium compounds showing this ar¬ 
rangement; for CsChl it was 0.31. 

(as) The unit cell of CrOa contains four molecules. A structure based 
on Vh has been suggested but not proved. 

(at) The data on LiCda are conflicting. According to one investigator 
it is cubic with a cell apparently holding 6 molecules; others state that 
the arrangement is hexagonal close-packed. 

(au) The tetragonal unit of TiAla contains four molecules. An atomic 
arrangement has been described which, based on Vj, has atoms in the 
following special positions : 

Ti: (a) 000;§0i;M0;0M 
Alf2P (r) Hi-113 • Hi-4-33 

\^J 444; 444; 444; l44 

Al(l): (b) ^^|;0|0;0()i;i00 
A1HV rH") 1^^ • 3.1. ill. 311 444, 444, 444, 444. 

(av) It has been found that the agreement between observed and cal¬ 
culated intensities from FcjC can be improved by altering very slightly 
the parameters of the iron atoms and by placing the carbon atoms in 
positions different from those previously suggested. As before, the iron 
atoms are in the following special positions of : 

Fe: (c) uvj; etc. (vsee p. 266 of book) with u= 0,833, v=0.04 
Fe: (d) xyz; etc. with x=0.333, y=0.175, z=0.065. 

Fig. 289a.—(left) The improved 
structure for FczC projected 
on the b-face of its ortho¬ 
rhombic cell. The large cir¬ 
cles are the iron atoms. 

Fig. 289&.—(right) A packing 
drawing of FesC if the (larger) 
Fe atoms have their neutral 
(metallic) radii and the C 
atoms have the radius sug¬ 
gested by the diamond. 
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Instead of being in symmetry centers the carbon atoms are in another 
set of (c) u'v'l with u'=0.43, v'=0.87. The resulting interatomic dis¬ 
tances give iron the radius found in the metal, 1.25 A; the radius of car¬ 
bon, 0.76 A, is that which occurs in the diamond (Figure 289a and b). 

(aw) The orthorhombic unit of KCNS contains four molecules. A 
structure which gives fairly good agreement between calculated and photo¬ 
graphically observed intensities is obtained by putting atoms in the fol¬ 
lowing special positions of : 

K: (c) u'Oj; u'H; u'OJ; u'|| with u'=0.212 
N, C, S: (d) uiv; ufv; u, i, v+|; u, f, ^-v with 

u(S)=0.400, v(S) = 0.095. 

The suggested parameters for nitrogen are u(N) = 0.080, v(N)=0.400; for 
carbon u(C) = 0.205, v(C) = 0.280. To derive the axes of this description 
(abc) from those of 1930, 352 (X'Y'Z') the transformations a==Z', b=X', 
c==Y' arc necessary. The kind of packing provided by this arrangement 
is illustrated by Figure 290. 

Fig. 290a.—(Zf/0 The structure assigned to KCNS as projected upon the c-face of 
its orthorhombic unit. The largest circles are K atoms; the others, in order of de¬ 
creasing size, are S, N, and C. 

Fig. 2906.—(right) A packing drawing of a. In this figure K atoms have their ionic 
size but for lack of better knowledge the other atoms have been assigned their neu¬ 
tral radii. 

The thallium salt, TICNS, probably has the same atomic grouping as 
KCNS. In fact one of the two studies (1934, 38) of TICNS makes it 
orthorhombic with a similarly shaped unit and the same space group 
Another determination, which presumably is wrong, found it to be tet¬ 
ragonal with a unimolecular cell. 

(ax) The orthorhombic unit of M0O3 contains four molecules. Two 
determinations agree in placing the molybdenum atoms in special posi¬ 
tions (c) of Vi®: uvi; etc, (see p. 266 of book). The parameters found for 
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these atoms are practically identical: u= 0.086 (0.088), v= 0.099 (0.101). 
According to one study (1931, 484, 485) the oxygen atoms likewise are 
in three sets of these special positions (c) with Ui=0.086, Vi=0.25, U2= 
0.586, V2= 0.099, 113=0.086, V3=0.070. 

(ay) The unit cell of PI3 contains two molecules. It is said that the 
space group is Cl with a structure similar to that of iodoform, CHI3 
[see p. 372 (z) of book]. The parameters chosen for the iodine atoms are 
x=0.30, y=0.35; z presumably being zero. 

(az) No evidence has been obtained that the unit cube of ReOa is 
larger than the one-molecule cell of the table. The Re atom is at the 
origin 000; it is thought that the three oxygen atoms are at (3b) 00-^; 
0|0; |00. This arrangement is said to resemble that of WO3 which ac¬ 
cording to (bb) is triclinic. 

(ба) The structure assigned to SrPba is a slight distortion of the NaPbs 
grouping (ao). The tetragonal unit contains one molecule with atoms in 
the following special positions: Sr: 000, Pb: 

(бб) The cell of WO3 listed in the table contains four molecules. The 
following atomic arrangement, based on C}, has been reported for its 
atoms: 

W: (i) xyz; xyz with x'=i, y'=3V, z'=-A, and x"=i, y"=iL 
O: (a) 000, (d) iOO, (c) 0|0, (e) ^0, 

(i) xyz; xyz with Xi=i, yi=3%, zi=0; X2=i, y2=~3^-, Z2=0; X3=|, 

ya^aV, z3=t\-; X4=i, y4=M, 24=1;^. 

A more thorough study of WO3 is obviously needed; whether this arrange¬ 
ment is correct or not, the unit described above is undoubtedly not the 
simplest one possible. 

(6c) The cubic arrangement found for LaMg3 and several intcrmetallic 
compounds like it has four molecules in the special positions: 

La: (4b) 000; HO; iOi; OiJ 
Mg: (4c) iH;00i;0i0;i00 
Mo” r4d^ ill • ill • 313 • 3 31 
iVlg. 4 4j, 444; 444; 444 

Mtr • ("4^^ 111 • 111 • 111 • 111 
444; 444; 444; 444* 

(bd) A new study of CI4 found diffraction lines incompatible with an 
Snl4-like grouping. It is said that this new pattern corresponds to a four- 
molecule unit cube but no structure has been deduced. 

(6e) The large monoclinic cell of Fe(CO)4 described in the table is 
said to be built upon Cgh and to contain 12 molecules. Making the doubt¬ 
ful assumption that this is the true unit it is concluded that the molecule 
of iron carbonyl is [Fe(CO)4]3. 

(bf) The tetragonal cell of LaAl4 is thoujght to contain 16 molecules. 
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{hg) An analysis which is undoubtedly wrong makes SiF4, solidified at 
— 170° C, cubic with a two-molecule unit having aQ = 5.41 A. Faulty 
interatomic distances prevail in the suggested arrangement. 

{hh) The unit chosen for MgZns is said to contain 16 molecules. A 
structure derived from that given to MgZn has been discussed. 

{hi) A recent study of telluric acid, Te(OH)5, contains evidence which 
is thought to show that the unit of its cubic modification is not the large 
32-molecule cell previously found. This new cube contains four molecules 
and has half the edge length, aQ=7.83 A. 

Four molecules are also to be found in the monoclinic unit of the second 
form of Te(OH)6; the space group is reported to be Cah. 

(6;) The unit cube of the ThBg arrangement contains a single molecule 
and is based on Oj,. Placing the metal atom at the origin 000, the boron 
atoms form an octahedron with the coordinates (Figure 291a): 

B: (Gd) 22^; 2^2? ^22> 22^J 2^2) 
ill . 11^. iQl 

In CaBe, which has been studied more fully than the other compounds of 
this type, u=0.207 giving a B-B separation of 1.716 A. In Figure 291b 
where the origin has been translated to a Be center at the structure 
appears as a body-centered CsCl packing of metal atoms and boron 
octahedra. 

Fig. 291a.—{left) The unit of 
the CaBe grouping projected 
on a cube face. Small circles 
are B atoms. 

Fig. 2916.—{right) A packing 
drawing of CaBe giving the 
atoms their neutral radii. The 
calcium atom at the origin of 
a has been translated to the 
cube center of this drawing. 

(6/c) The brown alkali graphites have been given the composition RCs. 
Their four-molecule hexagonal cells have ao=4.94 A, twice that of graphite. 
The alkali atoms are between the graphite layers in positions which have 
not been exactly fixed. 

(Jbl) The black alkali graphites are said to be RCie* Their units con¬ 
taining two molecules also have bases with twice the edge length and four 
times the area of graphite. It is considered that they are derived from 
the brown graphites by allowing alternate layers of alkali atoms to distill 
away. 

(bm) Crystals of the intermetallic compound Sb2Tl7 provide an ex¬ 
ample of a body-centered cubic superlattice. Atomic positions in the 



46 THE STRUCTURE OF CRYSTALS 

four-molecule cube, as determined from photographic data, are the fol¬ 
lowing special positions of OJ (1930, 352, p. 148): 

12 Sb: (12a) ±(u00); ±(0u0); ±(00u) and 6 similar points about 
with u=0.29 

2 Tl: (2a) 000; 
16 Tl: (16d) ±(u'u'u');±(u'u'u');db(u'u'u');±(u'u'u') and 8 similar points 

about -jH with u'=0.167 
24 Tl: (24j) ±(uiUiO); ±(uiUiO); db(OuiUi); ±(0uiUi); ±(ui0ui); ±(ui0ui) 

and 12 similar points about with Ui=0.35. 

(bn) The atomic arrangement given to Ag3Hg4 has a four-molecule 
unit cube with atoms in the following special positions of 0^: 

Ag: (12h) ^-Oi; jOf; jfO; I5O; OH; Of^ and 6 similar coordinates about 
Hg: (16d) uuu; uuu; tiuu; uuu; uuu; uuu; uuu; uuu and 8 similar coordi¬ 

nates about with u= 0.192. 

(bo) The orthorhombic unit assigned to B10H14 would contain eight 
molecules; its space group is said to be Vh. 

(bp) The so-called Na4Pb phase of the Na-Pb system has been said to 
be actually NasiPbs with a cubic structure like that of CusiSns (ad). 

(bq) The complete structure found for the cubic intermctallic com¬ 
pound CU|5Si4 is developed from Tj. Silicon atoms in its four-molecule 
cell are in (1930, 352, p. 131): 

(16f) uuu; u, u, |-u; ^-u, u, 0; u, ^-u, u; u+J, u-bi, u+H 
J-u, u-i-j, j-u; u-bi, f-u, J-u; J-u, J-u, u-bi 

and similar points about Hi; with u=0.208. Copper atoms are in: 

(12k) fOi; |0f; jfO; IiO; Oil: Ofl and similar points about 532 

and in 

(e) xyz; x, y, ^-z; §-x, y, 2; S, ^-y, z; 
zxy; §-z, X, y; 2, |-x, y; z, x, §-y; 
yzx; y, i-z, x; y, 2, i-x; ^-y, z, x; 

y+i, x-bi, z-bl; i-y, x+i, f-z; y-fi f-x, i-z; f-y, i-x, z-bi; 
x+i, z+i, y+i; X+J, f-z, f-y; f-x, f-z, y-bf; f-x, z+f, f-y; 
z+f, y+f, x-bf; f-z, f-y, x+f; f-z, y-bf, f-x; z-ff, f-y, f-x 

and similar points about fff with x=0.12, y=0.16, z=-0.04. 
(br) A tetragonal tungsten oxide, of the apparent composition W40n, 

has been found to have a unit of almost the same size and shape as the 
triclinic unit assigned to WO3. One W4OU molecule is contained in this 
cell and it is thought that its atomic arrangement is practically the same 
as that of WOs with one oxygen atom per cell removed. 
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(6s) The unit prism of AlaFe (Table I) is said to contain 24 molecules. 
A recent study makes a^ four times as big (47.43 A) with as space 
group. Such a cell is reported to have in it 400 atoms. 

(bt) The large cells of HfF4 and ZrF4 of Table I would enclose 12 mol¬ 

ecules. The space group is Cgh- 
(bu) If boron carbide is B5C, calculation would give it 2.19 molecules 

per cell. Its composition is therefore considered to be in doubt. The 

space group is Dga- 
(bv) A rhornhohedral unit containing one molecule has been found for 

aluminum carbide, AI4C3. It is said that the A1 atoms are in two sets of 
special positions: (c) zt:(uuu) of with Ui= 0.293 and U2= 0.128. Two 
of the three C atoms are in another set with u'= 0.217; the third is at the 

origin (a) 000, 

New Structures of the Type Rx(MX2)y 

(са) The pseudo-tetragonal unit assigned to AgC102 is supposed to 

include 10 molecules. 
(сб) The cell described for the monoclinic sulfide miargyrite, AgSbS2, 

contains eight molecules. The space group is reported to be Cjh- 
(cr) The possibly orthorhombic mineral polybasite (Ag, Cu)2Sb2S4, has 

been given an eight-molecule cell. A space group assignment is 
(cd) The orthorhombic unit of CaB204 contains four molecules. An 

atomic arrangement found from photographic data places atoms in the 
following positions of Vj^: 

Ca: (c) lOu; |0u; 11+^; I, h with u=0.26 
B: (d) xyz; -^--y, f-z; x, y+i ^-z; |-x, y, z; xyz; y+^, z+J; 

X, i-y, z+l; x+l, y, Z with x=0.12, y=0.20, z==0.88 
Oi: (d) XiyiZi; etc. with Xi=().125, yi=0.21, zi=0.19 
O': (d) x'y'z'; etc. with x'=0.11, y'=0.09, z'=0.75. 

The axes of this description are the same as those of 1930, 352; the origin 
is in a symmetry center at |0|. The linked B-0 tetrahedra which make 
up the framework of this crystal can be seen from Figure 292a and b. 

Fio. 292a.—(left) Atoms in the unit prism of CaBjO^ projected on the a-face. The 
largest circles are O atoms; intermediate ones are Ca. 

Fig. 2926.—(right) A packing drawing of a with Ca and O atoms having their ionic 
radii. The way the BO4 tetrahedra are linked together by sharing oxygen atoms is 
clearly seen. 
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(ce) The pseudo-cube ascribed to Ca (€102)2 is bimolecular. 
(c/) The orthorhombic unit of emplectite, CuBiS2, contains four mol¬ 

ecules; its space group is V^. The corresponding antimony compound 
wolfsbergite, CuSbS2, is structurally isomorphous. 

(eg) A redetermination of the structure of chalcopyrite, CuFeS2, has 
led to a somewhat more complicated arrangement. The unit prism, with 
the same base, has twice the previous height and contains four molecules. 
Atoms, in special positions of V^, are at: 

Cu: (a) 000; 5O4; O24, 

S: (d) M; u-JI; IQs; Qil; i 

Fe: (b) 00i;i0t;M0;0 
n+i, I; u+i, h I; i, i 11 .5,1 ^ 

87 2 4) 

11 
2 4 

3 
8 

with u=0.27. The resulting atomic separations, Cu-S=2.32 A, Fe-S=2.20 
A, are those to be expected from neutral atoms (Figure 293a and b). 

Fig. 293a.—(left) The new arrange¬ 
ment found for chalcopyrite, CuFeS2, 
as projected upon an a-face. Cu 
atoms are at the origin; intermediate 
circles are the Fe and the smallest 
circles the S atoms. 

Fig. 2936.—(right) A packing drawing 
of CuFeS2 giving the atoms their 
neutral radii. The line-shaded 
spheres are Cu. 

Fig. 294a.—(left) A basal projection of the atoms in the hexagonal unit of the struc¬ 
ture found for KAg(CN)2. The largest circles are K atoms, the small heavy ones 
are C; of the intermediate circles the smaller represent the Ag atoms. 

Fig. 2946.—(right) A packing drawing showing half the contents of the unit prism of 
KAg(CN)2. Corresponding atoms in a and 6 are designated by the same letters. 
Potassium and silver (line-shaded) atoms have their ionic radii but the sizes of C 
and N are probably without real significance. 

(ch) The-six-molecule unit found for KAg(CN)2 has an arrangement 
based on Its atomic positions have been given as (Figure 294): 
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K: (b) OOi; OOf K': (f) Hu; Hu; I, i ^-u; |, i u+| with u=0.260 
Ag: (h) uuO; 2u, ti, 0; u, 2u, 0; uu§; 2u, uH; u, 2Q, \ with u= 0.167 
C: (i) xyz; y-x, x, z; y, x~y, z; x, x-y, z; yxz; y-x, y, z; x, y, ^~z; 

x~y, X, ^z; y, y-x, ^-z; x, y-x, z+§; y, x, z+^; x-y, y, z+i 

with x=0.295, y= z=0.109 

N: (i) x'yV; etc. with x'=:0.365, y'=i z'=0.167. 

In all other cyanides it has not been possible to establish the separate 
positions of carbon and nitrogen. Instead the cyanide radical seems to 
have the spatial characteristics of a sphere with a radius substantially 
that of the bromide ion. For this reason it is not clear how much sig¬ 
nificance is to be attached to the C and N parameters stated above and 
to the short K-N separation (2.56 A) that results. 

{d) The unit cube assigned to K2Fe204 is reported to contain four 
molecules. 

{cj) Eight molecules are associated with the hexagonal prism of KFeS2. 
{ck) Lithium ferrite, Li2Fe204, is anisotropic if prepared below ca 600® 

C; above this temperature a cubic modification is produced which does 
not invert on cooling. The curious fact has been observed that its powder 
lines correspond to a unit containing one molecule. The intensities of 
these lines are explicable in terms of an NaCl arrangement [XI, (b)] of 0 
atoms in (4c) ; OOJ; 0^0; |00 and of Fe and Li atoms irregularly dis¬ 
tributed among the positions (4b) 000; ^|0; ^O^; OH* 

(cT) Crystals of NH4CIO2 are said to have a tetragonal unit holding 
two molecules. The proposed atomic arrangement places atoms in the 
following special positions of C^y.* 

NH4: (a) OOu; Hu with u=0 
Cl: (b) OH^ ^Ou' with u'= J 
0: (c) ui, ^-ui, v; Ui+i Ui, v; Ui, Ui+|, v; ^-Ui, tii, v with v=|. 

A more detailed study of this structure would be instructive. 
(cm) The original investigation of NH4HF2 (1932, 196) gave it the 

symmetry of Vif but failed to find an atomic arrangement. Recently the 
same data have been shown to be consistent with the following structure 
developed from : 

N: (g) Hu; ifu; ffu; fiu with u=0.560 
F: (e) u'OO; u'OO; u', 0; u'+|, 0 with u'=0.142 
F: (h) Hiv; iuiv; 0, ^-Ui, v; 0, Ui+|, V' with Ui=0.132, v=0.135. 

These axes, abc, and X'Y'Z' of 1930, 352 are connected by the relations 
a=X', b=Z', c=Y'. The pairs of fluorine atoms belonging'to an HF2 

ion are, as should be expected, especially close together with 2.37 A 
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(Figure 295a and b). It is customary to assume that the hydrogen atom 
in these acid fluorides lies midway between the two fluorine atoms on a 
line joining their centers; such an assumption cannot of course be proved 

by means of X-rays. 

Fig. 295a.—{left) The structure found for NH4HF2 projected upon the c-face of its 
orthorhombic unit. The larger circles are the NH4 groups. 

Fig. 2955.—{right) A packing drawing of the NH4 and HF2 ions in NH4HF2. 

(cn) Sodium ferrite is rhombohedral with the CsChl structure {d). 
Atoms of the single NaFe02 molecule in the unit rhombohedron have the 
coordinates: Na at 000; Fe at O at uuu; uuu with u==0.22. 

(co) From photographic data it has been concluded that the atoms in 
the two-molecule orthorhombic unit of NaN02 are in the following special 
positions of Cjv: 

Na: (a) OuO; u+l, 2 with u=0.583 
N: (a) Ou'O; i u'+i \ with u'=0.083 
O: (d) Ouiv; Ouiv; Ui+|, v+|; Ui+|, with Ui=0 and v=0.194. 

The coordinates of this description can be derived from those of 1930, 352, 
p. 56 by an interchange of Y' and Z'. The simple structure outlined above 
is illustrated in Figure 296a and b. The N-0 separation in its non-linear 
NO2 ion is 1.13 A; the Na-0 distance, ca 2.48 A, is substantially that 
found in NaNOs. 

(cp) The supposed pseudo-tetragonal unit of Pb (€102)2 is reported to 
contain one molecule. 

{cq) A monoclinic cell for TIASS2 with the dimensions of the table would 
enclose eight molecules. The space group has been given as either Cjh 
or C|h. 

(cr) Photographic observations have been used to assign an atomic 
arrangement to ctystals of ammonium hypophosphite, NH4H2P02. Ac- 
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Fig. 296a.—{leji) The orthorhombic grouping found for NaN02 projected on its a-face. 
Atoms of the non-linear NO2 groups are joined by light lines; intermediate circles 
designate the Na atoms. 

Fig. 2966.—{right) A j)acking drawing of a. 

Fig. 297a.—{left) The structure chosen for NH4H2PO2 projected on the a-face of its 
orthorhombic cell. K, O and P atoms are shown as large, intermediate and small 
circles. Proposed positions for the hydrogen atoms are indicated by the dashed 
circles. 

Fig. 2976.—{right) A packing drawing of a showing the positions of the NH4 and 
PO2 groups. 

cording to this structure (Figure 297) which places four molecules in the 
orthorhombic unit, atoms are in the following special positions of : 

NH4: (a) ±(0i0);zt(0H) P: (g) ±(uOi);±(uM) 
O: (m) ±(u'0v'); ±(u'-|v'); ±(u', 0, dz(u', h v'+|). 

The axes of this description (abc) arise from those of 1930, 352, p. 67 
(X'Y'Z') by transferring the origin to a center of symmetry and using 
the transformation a==Z', b=X', c=Y'. 

The chosen parameters u(P)=0.541, u'(O) = 0.347, v'-0.136 give an 
NHi-O separation (2.81 A) which is unusually short. This has been con¬ 
sidered to show that the NH4 groups are not rotating; such an interpreta¬ 
tion could be convincing only if the correctness of the selected parameters 
were supported by more quantitative evidence than is now available. 

Suggested hydrogen positions, which would bind each atoih to two 
NH4 groups and one phosphorus atom are (m) UiOvi; etc. with iii= 0.805, 
vi= 0.142; they cannot of course be qhecked by X-ray observations. 
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(ab) The parameters of Table I have been assigned to the atoms in 
divalent nitrates having the structure (s) characteristic of Ba(N03)2- It 
has been suggested (1931, 265) that at ordinary temperatures the nitrate 

groups in Ca(N03)2 are rotating but data in support of this idea have not 

been published. 

Table I. Parameters for Crystals or the Alkaline 

Earth Nitrates 

Crystal u{N) x{0) y{0) z{0) 

Ba(N03)2 0.150 0.220 0.204 0.026 

Ca(NO,)j .161 .247 .207 .033 

Pb(NO,)2 .156 .234 .209 .033 

Sr(N03)2 .159 .236 .209 .032 

(ac) The unit prism of bromlite (alstonite), BaCa(C03)2, contains two 

molecules. It is similar in shape to the orthorhombic cells of barite and 

aragonite with dimensions lying between them. Nevertheless this min¬ 

eral is thought to be a compound rather than a solid solution. 

(ad) The monoclinic barytocalcite, also BaCa(C03)2, has been assigned 

a two-molecule unit. The space group is reported as C2. 

(ae) The three hexagonal carbonates synchisite, CaC03-RFC03, par- 

isite, CaC03’2RFC03, and cordylite, BaC03’2RFC03 (R is a mixture 

of trivalent rare earth atoms, Ce, La, etc.) have unit prisms with bases 

of about equal size but with very different heights. Closely related atomic 

arrangements, which however need further confirmation, have been pro¬ 

posed for these minerals. The following atomic coordinates are necessary 

for their description: 

(a) OOw; 0, 0, w+J (b) OOv; OOv; 0, 0, v+i; 0, 0, 

(c) Hu; Hu; i i u+i; i §, §-u (d) f^t; i f, t+J. 

Oxygen atpms have not been located; the other atomic positions together 
with the cdiresponding parameters |in parentheses) are listed in Table II. 

52 
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Table II. Atomic Positions and Parameters Given to the 

Atoms in Synchisite, Parisite and Cordylite 

Substance B Ca {or Ba) BF BR BCOz 4R ^F 4 COt 

Synchisite a d a — — — c 

CaCOs-RFCO, (w«0) (!) (i) — — — (-0.117) 

Parisite a — — d b c c 

CaCOr2RFCO, (0) — — (i) (0.163) (0.163) (-0.076) 

Cordylite a — — d c b c 

BaCOr2RFCO, (0) — — (i) (i) (\) (-0.07) 

(af) A new structure has been proposed for bastnasite, (Ce, La, . . .) 
FCO3, based on instead of Dah- Its atoms have been put in the posi¬ 
tions ; 

6 R: (g) uuO; etc. of 1930, 352, p. 159, with u=f 
2 F: (a) 000; 00| 4 F: (f) ^|u; etc. with u=ca 0. 

12 O: (i) xyz; etc. with x=y=ca z=ca ^ 
6 0: (h) uvj; etc. with u and v undetermined 
6 C: (h) u'v'J; etc. with u' and v' undetermined. 

(ag) Parameters have been determined for the atoms in KNO3 and 
PbC03. As Table III indicates they are almost identical with one another 
and with those previously found for aragonite (6) (see p. 272 of book). 

Table III. Parameters of the Atoms in KNOj, PbCOi and Aragonite 

Atom KNO, PhCOi CaCOz 

X y z X y z X y z 

K, Pb, Ca 0 0,416 0 0 0.417 0 0 0.417 0 
N, C, C 0 .76 i 0 .764 0.163 0 .75 i 

0(1) 0 .883 i 0 .908 .153 0 .917 * 
0(2) 0.194 .686 i 0.205 .692 .153 0.23 .67 i 

(ah) A structure based on photographic data has been deduced for 
the iodine and oxygen atoms in LiI03. These atoms in the two-molecule 
unit are placed in the following special positions of Dj: 

I- (c) ili; f M O: (g) uuO; OuO; uOO; Qu^; 0u|; u0§ with u=|. 

If the lithium atoms are in (b) 00OOf a reasonable Li-0 separation, 
2.23 A, is obtained. It should be noticed (Figure 298) that this arrange- 

Fig. 298.—A basal projection of the arrange¬ 
ment proposed for LilOj. The Li atoms 
are represented by the smallest, the I by 
the largest circles. The absence of I Os ions 
in this grouping is evident. 
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Table IV. The Crtstal Stkhctures op the Compounds Ri(MXs)y 

Substance, symmetnj and structure type Cp or a References 

AgFOs Tetragonal (?) 5.33 6.08 1933, 117. 

BaCOa Ortho¬ KNO3 (h) 5.2556 6.5490 1931, 89. 

rhombic bo = 8.8345 

BaCa(C03)2 Ortho¬ (ac) 8.77 6.11 1930, 111b. 

(Bromlite) rhombic bo = =4.99 

BaCa(C03)2 Monoclinic (ad) 8.15 6.58 1930, 111c. 

(Barytocalcite) b„=5.22, |8=83°52' 

BaC03-2RFC03 
(Cordylite) 

Hexagonal (ae) 4.35 22.8 1931, 337. 

BaCeOa Cubic CaTiOa (d) 4.377 1934, 112. 

Ba(N03)2 Cubic Ba(N03)2 
(s), (ab) 

1931, 460. 

BaThOa Cubic CaTiOs (d) 4.480 1934, 112. 

BaZrOa Cubic CaTiOa (d) 4.176 1934, 112. 
CaCOa (Calcite) Hexagonal (ap) 1931, 34, 35, 

1934, 283. 

CaCOs-RFCOs 
(Synchisite) 

Hexagonal (ae) 4.094 18.20 1931, 337. 

CaC03-2RFC03 Hexagonal (ae) 4.094 27.93 1931, 337. 
(Parisite) 

CaMg(C03)2 Hexagonal (v) 6.050± 46°54' 1930, 398. 
(Dolomite) 

Ca(N03)2 Cubic Ba(N03)2 
W, (ab) 

0.004 

1931, 265, 460. 

CaSn (303)2 Hexagonal (v) 6.24 45^44' 1934, 219. 

(Nordenskioldite) 

CdTiOs (low 

temp, form) 

Hexagonal FeTiOs (ax) 5.82 53'^36' 1934, 216. 

(Ce, La . . .). Hexagonal (af) 7.094 9.718 1931, 336. 

FCOa (Bastniisite) 

C0CO3 Hexagonal NaNOs (a) 1932, 14. 

CoTiOa Hexagonal FeTiOa (ax) 5.49 54°42' 1934, 216. 

CsNOa Hexagonal (aw) 10.74 7.68 1934, 273. 

CS2S206 Hexagonal (au) 6.326 11.535 1932, 187. 

FeCOs* Hexagonal NaNOs (a) 5.754 47°25' 1932, 167. 
(Siderite) 

FeTiOa Hexagonal FeTiOs (ax) 5.52 54°50' 1934, 14, 216. 
(Ilmenite) 

HsBOa Triclinic (ay) 7.04 6.561 1934, 304. 

bo- 7.04 

InBOs Hexagonal NaNOs (a) 5.841 48°10' 1932, 167. 

KCbOs Cubic (?) CaTiOs (d) 4.005 1932, 371. 
KNOa Ortho¬ KNOs (b), 5.43 6.45 1931, 102. 

rhombic (ag) bo« 9.17 

♦92.6%,FeCO,, 6.1% MnCOj. 

t For HsBO,, a-92°30', /S-lOinO', 7=120°. 
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Substance^ symmetry and structure type ora References 

K2S2O6 Hexagonal {av) 9.756 6.274 1931, 30, 220; 1932, 

186, 201; 1933, 210, 

211. 

KTaOg Cubic (?) CaTiOa (d) 3.981 1932, 371. 

LaBOa Ortho¬ KNO3 (b) 5.10 5.83 1932, 167. 

rhombic bo *8.22 

LilOs Hexagonal (ah) 5.469 5.155 1931, 499. 

MgTiOs Hexagonal FeTiOa (ax) 5.54 54°39' 1934, 216. 

M113AS2OC 

(Annarigite) 

Hexagonal (ai) 13.44 8.72 1933, 5. 

MriTiOa Hexagonal FeTiOa (ax) 5.62 54°16' 1934, 216. 

NII4IO3 Cubic CaTiOa (d) 4.5 1932, 158. 

NH4NO3 (1) Cubic (oj) 4.40 1931, 265; 1932, 204. 

(169.5° to 125.2° C range) 

NII4NO3 (II) Tetragonal (ok) 5.75 5.00 1931, 265; 1932, 204. 

(125.2° to 84.2° C range) 

NH4NO3 (III) Ortho¬ (al) 7.06 5.80 1932, 204. 

(84.2° to 32.3° C 

range) 

rhombic bo = 7.66 

NII4NO3 (IV) Ortho¬ (am) 5.75 4.96 1932, 204, 470. 

(32.3° to -18° C 

range) 

rhombic bo =5.45 

NH4NO3 (V) 
(below —18° C) 

Hexagonal (an) 5.75 15.9 1932, 204. 

NaChOa Cubic (?) CaTiOa (d) 3.889 1932, 371. 

NalKXla Monoclinic (ao) 7.51 3.53 1933, 518. 

b^=9.70, /3=93°19' 

NaNOa Hexagonal NaNOa (a), 1931, 266; 1932, 49; 

(ap) 1933, 492; 1934, 235. 

Na^SOa Hexagonal (aq) 5.441 6.133 1931, 500. 

NaSb03-4Bc0 

(Swedenborgite) 

Hexagonal (y)y (as) 1933, 3. 

NaTaOa Cubic (?) CaTiOa (d) 3.881 1932, 371. 

NaWOa Cubic CaTiOa (d), 3.83 1932, 250. 

((Xbic Na-W Bronze) (ar) 

Na2(W03)5(?) Tetragonal (ar) 17.5 3.80 1932, 251. 

(Blue Na-W Bronze) 

(Na, Ce, Ca). Cubic (?) CaTiOa (d) 3.854 1930, 391. 

(Ti, Cb)03 (Loparite) 

NiTiOa Hexagonal FeTiOs 5.45 55°8' 1934, 216. 

PbCOa Ortho¬ KNOa (b), 5.166 6.146 1933, 101. 

(Cerussite) rhombic (aff) b^ *8.468 

Pb(N08)2 Cubic Ba(NOs)2 

(s), (ab) 

1931, 460. 

RbNOa Ortho¬ (at) 18.08 7.38 1933, 351. 

rhombic bo“ ao.45 

RbsSaOe Hexagonal K2S2O® (av) 10.144 6.409 1931, 220; 1932, 186. 

ScBOs Hexagonal NaNOa (a) 5.782 48°28' 1932, 10^. 
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Substance, symmetry and structure type 

SrHfOs Cubic CaTiO, (d) 

Sr(NO,)2 Cubic Ba(NO,), 

(s), (06) 

SrZrO, Cubic CaTiOa (d) 

YBO3 Hexagonal NaNO, (a) 

ZnCOa Hexagonal NaNO, (a) 

a„ c„ or a References 

4.069 1933, 204. 

1931, 460. 

4.089 1933, 204. 

6.44 46°17' 1932, 167. 

6.669 48°26' 1932, 167. 

ment does not provide either simple or complex iodate ions such as would 
be expected on chemical grounds; instead each iodine atom is made equi¬ 
distant from six oxygen atoms (1-0=2.23 A=Li-0). For this reason a 
further study of LilOs must sometime be made. 

(ai) The hexagonal unit of armangite, Mn3As206, recorded in Table IV 
would contain nine molecules. It is thought that the true unit is probably 
rhombohedral, with a space group that is Cg^, Dg or Dg^. 

(aj) The highest temperature modification of NH4NO3 seems to give 
the simple diffraction pattern required by a one-molecule cube in which 
N atoms and NO3 groups have a body-centered CsCl grouping [XI, (a)]. 
Individual crystals of this modification grow so fast that good intensity 
data could not be obtained but the single molecule unit has been taken 
as evidence for a rotating NO3 group. 

(ak) The unit of the second, tetragonal, form of NH4NO3 contains 
two molecules. Even at 100° C these crystals grew too fast to yield good 
diffraction data and no z parameters could be established. The x and y 
parameters are said to be the following: 

NH4: 00?; M? N: OJ?; JO? 0: 0^?; JO? 
O: xy?; xy?; yx?; yx? with x=0.14, y=0.36. 

(al) The third modification of NH4NO3 has a four-molecule ortho¬ 
rhombic prism and a structure based on V^®. Choosing the same axial 
orientation that was used for cementite [XIV, (0)] atoms have been found 
to be in the positions : 

NH4: (c) uvj; etc. (book, p. 266) with u=0.30, v=0.52 
N: (c) uVJ; etc. with u'=—0.09, v'=-0.19 
O: (c) UiViJ; etc. with Ui=-0.19, Vi=-0.05 
0: (d) xyz; etc. with x=—0.07, y=-0.27, z=0.06. 

This arrangement is illustrated in Figure 299a and b. 
(am) Two separate determinations have shown that the two molecules 

in the orthorhombic unit of NH4NO3 which is stable at ordinary tem¬ 
peratures are arranged according to the unusual space group V^. With 
axes chosen as in Table IV they agree in placing atoms in the following 
special positions: 
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Fig. 299a.—(lejt) The atoms of the third modification of NH4NO3 projected on the 
b-face of its orthorhombic unit. Atoms of the NOj groups are joined by light lines. 

Fig. 299b.—(right) A packing drawing of a. 

NH4: (b) 0|u; JOQ N; (a) OOu'; i§Q' 
0: (a) OOuij ||ui 0: (f) wOv; wOv; ^-w, v; w+^, 5) 

The origin used in 1932, 470 is displaced one half along the c-axis; there¬ 
fore though the parameters as listed in Table V are different, the atomic 
arrangements found in these two investigations are nearly identical. This 
can be seen from Figure 300a, wherein the unit of 1932, 204 is outlined 
by heavy lines, that of 1932, 470 using dotted lines. 

Table V. PAiiAUfETERs of the Atoms in NH4N0» 

(Room Temperature Form IV) 

Determination uiNFh) u'{N) ui(0) w V 

1932, 204 0.57 0.03 0.28 0.19 -0.095 

1932, 470 .097 .500 .76 .183 .376 

projected on its b-face. The unit cells of the two determinations are indicat^ by 
full and by dotted lines. The largest circles are NH4 ions, the smallest are N atoms. 

Fig. 3006.—{right) A packing drawing of a. 
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(an) The fifth modification of NH4NOJ (stable below —18° C) has 
been given a hexagonal, or pseudo-hexagonal, unit containing six mol¬ 
ecules. No X-ray evidence was found which indicated the gradual transi- 

tion at —60° C. 
(ao) The monoclinic unit chosen for NaHCOa contains four molecules. 

Using photographic spectral data it has been given an atomic arrange¬ 
ment with all atoms in general positions of C^h (Figure 301): (e) rb(xyz); 
=t(x+|, I-y, z+-|). The selected parameters are listed in Table VL In 
this structure the distance between oxygen atoms in adjacent CO3 groups 
is 2.55 A. Such a close approach has been thought to mean that these 
atoms are bound by an intermediate hydrogen atom which then would 
be at x= 0.319, y= 0.250, z=0.064. The atomic parameters of Table VI 
and with them this evidence for the existence of a hydrogen bond should 
be confirmed by more quantitative intensity data. 

The coordinates used in this description refer to axes so chosen that 
the gliding component is along the diagonal to two of them. In the con¬ 
ventional description it is along one axis. 

Table VI. Parameters OF THE Atoms IN NallCOa 

Atom X y z 

Na 0.278 0.0 0.708 
C .069 .236 .314 
0(1) .069 .367 .314 
0(2) .200 .169 .183 
0(3) .939 .169 .444 

Fig. 301a.—{left) Atoms in the proposed structure for NaliCOs projected on the l> 
face of its monoclinic unit. The large O and small C atoms of the COa groups are 
joined by light lines; positions thought probable for the hydrogen atoms are indi¬ 
cated by the dotted circles. 

Fig. 3016.—(right) A packing drawing showing the small Na+ and the larger COa 
groups of a. 

(ap) X-ray photographs of NaNOj made at various temperatures up 
to 280° C have been interpreted as showing that the NO3 group is rotating 
at high temperature. At 280° C the unit rhombohedron has the dimen¬ 
sions a^=6.56 A, a£=45°35'. 

Similar measurements of unit cell size at higher temperatures, as well 
as Laue photographs up to 600° C, have been made of calcite (CaCOs). 
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(ag) Using data derived from twinned crystals the atoms in the two- 
molecule unit of Na2S03 have been placed in the following positions of 
CJi (Figure 302): 

Na: (a) 000 (b) OOJ (d) Hu; f su with u=0.67 
S: (d) Jfu'; l^u'with u'=0.17 
O: (g) xyz; y-x, x, z; y, x-y, z; xyz; x-y, x, z; y, y-x, z 

with x=0.14, y=0.40, z=0.25. 

Fig. 302a.—{left) A basal projection of atoms in the hexagonal unit of Na^SOs. 
smallest circles are the 8 and the largest the O atoms. 

The 

Fig. 302/;.—{right) A packing drawing of a. One S atom (at z=0.17) is shown lying 
above the plane of its three O atoms. 

(ar) The analyses of cubic Na-W bronzes run from Na2W206 to ap¬ 
parently Na2W702i. This variation in composition is thought due to the 
gradual replacement of sodium by hydrogen. 

Blue Na-W bronzes are made by the weak reduction of NaWOa by 
zinc or hydrogen. The composition approaches that stated in Table IV. 

(as) The formula previously given to the mineral swedenborgite is 
wrong due to the interpretation of its beryllium as aluminum. Its unit 
contains two of the new molecules NaSb03*4Be0. One or the other of 
the following two structures developed from has been considered to 
be correct: 

Na: (a) OOui; 0, 0, Ui-f i with Ui=0 or 
(b) flu'; f, i u'-f § with u'=f 

O: (b) or (a) 
0: (c) uuv; 2u, u, v; u, 2u, v; u, u, v+|; 2u, u, v+J; 

u, 2u, v-h§ with u=|, v=0 
O: (c) u"u"v"; etc. with u"==| and v"=J 

Sb: (b) ||u2; |, h ^2+1 with U2=|. 

(at) A reexamination of RbNOa has led to a different structure. The 
large orthorhombic unit of Table IV contains 18 molecules. The crystal, 
however, is pseudo-hexagonal; if its slight departure from this higher sym¬ 
metry is neglected, the data are those to be expected from a structure with 
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10.45, Co=7.38, having nine molecules in the unit and Cly as space 
group. The previously chosen unit was rhombohedral (or pseudo-rhombo- 
hedral) with an arrangement developed from Cly [see (n), p. 279 of book]. 

(au) The unit prism of CS2S2O6 contains two molecules; the space 
group is given as either Dl or Dgt^. Cesium and sulfur atoms are assigned 

to the special positions: 

Cs: (a) 000; 00-^ Cs: (c) J; f 
S: (f) Hu; Mu; f, i u+M h h with u=0.70. 

No X-ray selection could be made between the two sets of oxygen posi¬ 
tions that were considered possible. 

(av) Four studies have been made of the structure of potassium dithi- 
onate, K2S2O6. From them it is clear that the hexagonal unit contains 
three molecules and that atoms are in the following special positions of Dg: 

2 S: (c) OOu; OOti 4 S in 2 sets of: (d) Hu; Mu 
3 K: (e) uuO; OuO; uOO 3 K: (f) uuj;0u2;u0^ 
18 0 in 3 sets of: (g) xyz; y-x, x, z; y, x~y, z; 

yxz; X, y-x, z; x-y, y, z. 

This crystal provides an instructive example of two very different arrange¬ 
ments (see oxygen parameters) that agree with the qualitative data from 
a group of spectral photographs. It has been shown that these data are 
about equally well explained by the two sets of parameters of Table VII. 
The second set (according to 1932, 201) gives so short a K-0 separation, 
ca 2.2 A, that it cannot be right. The satisfactory K-0 distances, of ca 
2.80 A, yielded by the parameters of 1933, 210 suggest that they may be 
near the true values (Figure 303a and b). 

(aw) The hexagonal unit which has been ascribed to CsNOa contains 
nine molecules. No atomic arrangement has been deduced but the curious 
observation has been made that its powder pattern is nearly identical with 
that of the cubic (or pseudo-cubic) KIO3 and very similar to that of the 
cubic Csl. No change in pattern occurs on heating CsNOa up to 200° C. 

Table VII. Parameters for the Atoms of K2S20« 

Atom Parameters according to 

1933, 210 1932, 201 
{x and y interchanged) 

X y z X y z 

S(l) 0 0 0.16 0 0 0.16 
S(2) i 1 .59 J f .59 
S(3) i I .27 i f ,27 
K(l) 0.375 0.375 0 0.39 0.39 0 
K(2) .69 .69 .69 .69 
0(1) .165 .11 .23 .09 .18 .22 
0(2) .615 .17 .34 .48 .24 .35 
0(3) .505 .21 .80 .58 .42 .79 
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Fig. 303a.—(left) A basal projection of the atoms in the hexagonal unit of K2S2O6. 
The largest circles are O, the smallest are S atoms. 

Fig. 3036.—(right) A packing drawing of a. The K ions are indicated by line-shading. 

(ax) The mineral ilmenite, FeTiOa, has a rhombohedral structure sim¬ 
ilar to the Fe203 arrangement [XIII, (a)]. Its corresponding space group, 
Cgi, is of lower symmetry because of the non-identity of its metal atoms 
but the two-molecule rhombohedra are of nearly the same size and shape. 
In FeTiOa, atoms have been given the positions: 

Fe: (c) db(uuu) with u= 0.358 Ti: (c) dz(vvv) with v= 0.142 
0: (f) ±(xyz); rfc(yzx); rfc(zxy) with x=0.555, y=—0.055, z=0.250. 

As might be expected from the close similarity in their cell sizes, it 
has been found that ilmenite and Fe203 form a continuous series of solid 
solutions (1934, 216). 

Nickel titanate, NiTiOa, has the ilmenite structure. The parameters 
assigned to its atoms are identical, within the limit of experimental error, 
with those of FeTiOa. 

Cadmium titanate, CdTiOa, occurs in two forms. The previously de¬ 
scribed structure, isomorphous with CaTiOa (d), is found in material pre¬ 
pared by quenching from above 1000° C. Crystals made below this tem¬ 
perature are like FeTiOa. The parameters given their atoms, u(Cd) = 
0.342, v(Ti) = 0.156, y=0.54, y=--0.03, z=0.26, yield the short Cd-0 dis¬ 
tance of 2.24 A but it IS said that other values would make it shorter still. 

(ay) The triclinic cell chosen for crystals of boric acid, H3BO3, in¬ 
cludes four molecules. If the space group is C], as is undoubtedly the 
case, all atoms are in general positions db(xyz). Boron and oxygen atoms 
have been assigned parameters (Table VIII) which yield a thoroughly 
platy structure. The resulting interatomic distances are B-0=1.36 A 
and, between adjacent groups, 0-0=2.71 A. It is stated that this 0-0 
separation is suflSciently below the normal 2.80 A to show that hydrogen 
atoms are situated between them. Inasmuch as the entire determination 
of structure, involving many variable parameters, has been based on 
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Table VIII. Parameters FOR THE Atoms OF HaBOj 

Atom X y z 

B(l) 0.653 0.430 0.25 
B(2) .319 .764 .25 
0(1) .430 .319 .25 
0(2) ,764 .319 .25 
0(3) .764 .653 .25 
0(4) .208 .542 .25 
0(5) .208 .875 .25 
0(6) .542 .875 .25 

qualitative visual estimates of photographic intensities, it is hard to attach 

much significance to this argument. In several instances unexpectedly 

short interatomic distances have been ascribed to hydrogen bonds rather 

than to errors or inaccuracies in parameter determinations. It should be 

pointed out that, except with certain especially favorable crystals (such 

as the alkali acid fluorides), intensity data better than the usual qualita¬ 

tive estimates on simple reflections arc needed to fix parameters with 

enough certainty to provide real evidence for such bonds. 



Chapter XVIA. Structures of the Type Rx(MX4)y 

(ac) The unimolecular tetragonal cell of jS-Ag2Hgl4 has atoms in the 
following special positions of (Figure 304a and b): 

Hg: (a) 000 Ag: (f) 0|§; ^0^ 
I: (n) uuv; uuv; uuv; uuv with u=0.27, v=0.225. 

The form of Cu2Hgl4 stable at room temperature has the same structure 
with u=:0.255, v-0.275. 

(ad) The oi-modification of Ag2Hgl4, stable above 50° C, is said to be 
truly cubic. The arrangement in the low temperature form (ac) is a dis¬ 
tortion of the ZnS structure; this a-structure is described as an exact ZnS 
grouping [XI, (c)] with three-fourths of the positions (4b) 000; J|0; ^0|; 
0^^ occupied by an irregular distribution of Hg-|-2 Ag. 

The a-form of Cu2Hgl4, stable above 70° C, is like the silver salt. 

(ae) Three studies have been made of the structure of anhydrous 
sodium sulfate, Na2S04. They agree in choosing an eight-molecule unit 
and in selecting Vj/ as corresponding space group. The atomic arrange- 

Fig. 304a.—(left) A c-face prmection of atoms of the room temperature (/?) modifica¬ 
tion of Ag2Hgl4. Atoms of I are represented by the largest, of Hg by the smallest 
circles. 

Fig. 3046.—(right) A packing drawing of a with the atoms given their usual ionic sizes. 
63 



64 THE STRUCTURE OF CRYSTALS 

Table I. The Crystal Structures of the Compounds Rx(MX4)y 

Siihstancef symmetry and sirnciure type or a References 

/3-AgjHgl4 Tetragonal AgiHgl* (ac) 6.340 6.340 1931, 257. 

a-AgjHgl. Cubic (ad) 6.383 1934, 133. 

(stable above 50 °C) 

AgI04 Tetragonal CaWO, (d) 5.368 12.013 1932, 51. 

AgRe04 Tetragonal CaWO. (d) 5.349 11.916 1933, 81. 

Ag2S04 Ortho¬ Na2S04 (ae) 5.847 10.251 1931, 179; 1932, 492. 

rhombic b„-12.659 

Ag5SbS4 Ortho¬ (af) 7.85 8.58 1932, 394. 

(Stephanite) rhombic b^ = 12.48 

Ag2Se04 Ortho¬ Na,S04 (ae) 6.069 10.211 1931, 179. 

rhombic b„=12.815 

BAs04 Tetragonal BPO4 (ag) 4.459 6.796 1933, 421; 1934, 240. 

BPO4 Tetragonal BPO4 (ag) 4.334 6.636 1933, 421; 1934, 240. 

BaW04 Tetragonal CaW04 (d), 5.64 12.70 1931, 344; 1932, 247. 

(ah) 

BeNaP04 Monoclinic (ha) 8.13 14.17 1934, 86. 

(Bcryllonite) b^=7.76, 13^90° 

CaCr04 Tetragonal ZrSiO. (/), 7.25 6.34 1930, 381; 1932, 106. 

(ai) 

Ca(F, Cl)Ca4(P04)3 (aj) 1930, 426; 1931, 298, 

(Apatite) Hexagonal 380; 1932, 203. 

CaMg(0H)As04 Ortho¬ (ay) 5.88 7.43 1933, 7. 

(Adelite) rhombic b^=*8.85 

CaMg(0H)As04 Monoclinic (ay) 5.68 7.57 1933, 7. 

(Tilasite) b^-8.63, /3=9Y28' 

CdCr2S4 Cubic MgAl204 (k) 10.190 1931, 347. 

CdFe204 Cubic MgAl,04 (k) 8.45 1931, 116. 

C0AI2O4 Cubic MgA]204 (k), 8.101 1931, 269; 1932, 30. 

(ak) 

(Co, Ni)3S4 Cubic MgAh04 (k) 9.41 (for several 1931, 318. 

(Linneite) minerals) 

C0SO4 Ortho¬ 4.65 8.45 1931, 209. 

rhombic* b,=6.71 

Co2Ti04 Cubic MgAI,04 (k) 8420 1930,246c; 1931,212. 

CsOsNOj Ortho¬ (ol) 8.08 7.22 1932, 239, 241. 

rhombic b^=8.35 

CsRe04 Ortho¬ (am) 5.73 14.26 1933, 222. 

rhombic b,=5.98 

CS2S2O8 Monoclinic (bb) 8.13 6.46 1934, 306. 

b^=8.33, /3=95°19' 

CUAI2O4 Cubic MgAl,04 (k) 8.0641 1931, 269; 1932, 223. 

CuiAsS4 Ortho¬ (an) 6.46 6.18 1933, 463; 1934, 208. 
(Enargite) rhombic bo«7.43 

CuFe204 Cubic MgAI,04 (k), 1934, 281. 
(quenched) {ak) 

* This unit contains four molecules, 

t The other determination (1931, 269) gives aj,»8.074 A. 
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Substance, symmetry and structure type a^ Co ora References 

CuFe204 Tetragonal (ak) 8.28 8.68 1934, 281. 

(annealed) 

Cu2FeSnS4 Tetragonal (bd) 6.46 10.725 1923, 64; 1934, 318. 

(Stannite) 

/3-Cu2Hgl4 Tetragonal Ag^HgL (oc) 6.08 6.135 1931, 257. 

a-Cu2Hgl4 Cubic (ad) 6.103 1934, 133. 

(stable above 70° C) 

CU3VS4 Cubic («), (ao) 6.370 1933, 350. 

(Sulvanite) 

FeAl204 Cubic MgAhO.Cfc), 8.119* 1931, 80, 269; 1932, 

(ak) 30. 

FeCr204 Cubic MgAljO. (*) 8.344 1931, 80. 

(Fe, Mg)Cr204 Cubic MgAlA (k), 1932, 104. 

(Chromite) (ap) 

Fe304 Cubic MgAl204 (k), 8.374 1931, 80; 1932, 345; 

(Magnetite) (aq) 1934, 77. 

Fe2Ti04 Cubic MgAljO* (k), 8.50 1932, 30. 

(ak) 

FeV204 Cubic MgAlaOi (k) 1932, 302. 

Ga2Zn04 Cubic MgAljO, (k) 8.323 1931, 75. 

KBF4 Ortho¬ BaSO, (0) 7.84 7.38 1930, 436. 

rhombic b^«5.68 

KCIO4 (low) Ortho¬ BaSO* (a), 8.834 7.240 1931, 404; 1932, 177. 

rhombic (ar) b^* 5.650 

K2Cr04 Ortho¬ K2SO4 (m), 5.92 7.61 1931, 88, 501. 

rhombic If 0 
42 10.40 

K2Mg2(S04)8 Cubic (at) 9.96 1931, 134. 

(Langbeinitc) 

KMn04 Ortho¬ BaSO, (a), 9.09 7.41 1931, 306. 

rhombic (ar) bo = =5.72 

KOsNO, Tetragonal CaW04 (d), 5.65 13.08 1932, 240, 241. 

(ah) 

Li(Fe, Mn)P04 Ortho¬ (au) 4.67 6.00 1932, 175. 

(Triphylite) rhombic bo= T0.34 

Li3P04 Ortho¬ (au) 4.86 6.07 1932, 495. 

rhombic bo= 10.26 

Li2S04 Monoclinic (av) 8.25 8.44 1932, 5a. 

b„=4.95, 107^*54' 

MgAl204 Cubic MgAtOi (k), 8.059± 0.004 1931, 80, 286; 1932, 

(Spinel) (ak) 101, 166, 286; 1934, 

61. 

MgCr204 Cubic MgAl204 (k) 8.305 1931, 80. 

MgFe204 Cubic MgAl204 (A;), 8.366 1931, 33, 80, 270; 

(ak) 1932, 30. 

MgGa204 Cubic MgAl204 (fc), 8.279 1931, 33; 1932, 30, 

(ait) 198,29S. 

• In 1931, 269, ao =8.084 A. 
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Substance, symmetry and structure type Co or a References 

Mgln204 Cubic MgAl204 (k), 

(ak) 

8.81 1932, 30. 

Mg2Ti04 Cubic MgAWi (k), 

(ak) 

8.44 1931, 212; 1932 , 30. 

MnAl204 Cubic MgAl204 (k), 8.271 1931, 80, 269; 1932, 
(ak) 30. 

MnCr204 Cubic MgAW, (k) 8.436 1931, 80. 

MnCr2S4 Cubic MgAl204 (k) 10.045 1931, 347. 

MnFe204 Cubic MgAW4 (k) 8.457 1931, 80. 

Mn2Ti04 Cubic MgAW4 (k) 8.67 1931, 212. 

(NU4)2Ber4 Ortho¬ K2SO4 (m), 5.8 7.5 1934, 114. 
rhombic (as) bo=10.2 

Nn4CI04 Ortho¬ BaS04 (a), 9.202 7.449 1931, 404; 1932, 177. 
(low) rhombic (ar) bo=5.816 

(NH4)2Cr04 Monoclinic (axv) 6.15 7.66 1931, 73. 
\ >0=6.27, /3 = 115°13' 

NH4OSNO3 Ortho¬ (ax) 5.53 13.54 1932, 238, 241. 
rhombic bo=5.86 

(NH4)2S208 Monoclinic (bh) 7.83 6.13 
bo=8.04, /3=95°9' 

1934, 306. 

NaaSO* Ortho¬ Na2S04 (r), 5.85 9.75 1931, 87; 1932, 193. 
rhombic (ae) bo=12.29 

NiAl204 Cubic MgAl204 (k), 
(ak) 

8.050 1931, 269; 1932 , 30. 

NiCr204 Cubic MgAl204 (k) 8.30 1932, 224. 

PbloCl2 ( ASO4) 6 

(Mimetite) 
Hexagonal (aj) 1932, 203. 

PbloCl2(P04)6 
(Pyromorphite) 

Hexagonal (aj) 1932, 203. 

PbloCl2(V04)« 
(Vanadinite) 

Hexagonal (cij) 1932, 203. 

PbCr04 Monoclinic (i) 7.10 6.80 1931, 63. 
(Krokoite) b„=7,40, 0 = 1O2°27' 

PbZn(0H)V04 Ortho¬ (az) 6.05 7.56 1933, 24. 
(Descloizite) rhombic bo=9.39 

RbOsNOa Ortho¬ (ax) 5.57 13.64 1932, 238, 241. 
rhombic bo=5.84 

RbRe04 Tetragonal CaWOi (d) 5.80 13.17 1933, 222. 
TlOsNOa Ortho¬ (a*) 5.42 13.45 1932, 238, 241. 

rhombic bo=5.68 
TlRe04 Ortho¬ (am) 5.63 13.33 1932, 222. 

rhombic bo=5.80 
YVO4 Tetragonal ZrSi04 (f) 7.126 6.197 1933, 75. 
Z11AI2O4 Cubic* MgAlj04 (k), 8.062 1931, 80, 269; 1932, 

(ak) 30, 165, 198. 
ZnCr204 Cubic MgAlj04 (k) 8.296 1931, 80. 
ZnCr2S4 Cubic MgAl,04 (k) 9.92 1931, 318. 
ZnF C2O4 Cubic MgAU04 (k) 8.423 1931, 80. 

* In 1931, 269 and 1932, 198, a„-8.093 A. 
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S'tibstancey symmetry and structure type 

ZnS04 Ortho¬ (6c) 

rhombic 
Zn2Sn04 Cubic MgAhO. (fc), 

(oft) 

Zn2Ti04 Cubic MgAljO. (ft) 

Cq or a References 

8.58 4.76 1934, 237. 

bo= =6.73 

8.61 1932, 30. 

8.410 1930,246c; 1931,212. 

ments proposed in the first two investigations are obviously wrong since 
they are chemically unreasonable, give unsatisfactory interatomic dis¬ 
tances and fail to agree with observed intensities of reflection. The most 
recent structure (1932, 493), illustrated in Figure 305a and b, meets these 
requirements, the data being drawn from spectral photographs. Trans¬ 
ferring the origin of 1930, 352, p. 69 to a center of symmetry at 
atoms are in the following positions: 

8 S: (a) db(8fi|) and 6 similar points about 0||, and 0|0 
16 Na: (g) zb(^8u); db(i, |, i~u) and 12 similar points about 

0^1, UO, with u= 0.436 
32 0; (h) ±(xyz); ±(x, \-y, \-z); db(i-x, y, l-z); ±Q-x, 

j—y, z) and 24 similar points about 0-||, ||0, |0| 
with x=-0.022, y=0.056, z=0.214. 

Silver sulfate, Ag2S04, and the corresponding selenate, Ag2Se04, are 
isomorphous with Na2S04. The structure given them from a study of 
their photographic reflections is not like that outlined above and yields 
improbable interatomic distances. It has since been shown that these 
data are explicable in terms of the Na2S04 structure with the following 
slightly different parameters for Ag2S04: u(Ag) = 0.450, x=0.022, y= 0.058, 
z=0.208. 

Fig. 305a.—(left) Atoms in the orthorhombic arrangement found for Na2S04 projected 
on an a-face. The atoms forming the SO4 ions are joined by light lines. 

Fig. 3065.—(right) A packing drawing of the Na+ and SO4— ions in Na2S04. 
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(af) The cell of stephanite, Ag5SbS4, contains four molecules; its space 

group is said to be V" ■ 
(ag) The tetragonal cells of BPO4 and BASO4 are bimolecular. Ac¬ 

cording to a structure developed from S4 they have atoms in the following 

positions: 

B: (c) OH; iOf P (or As): (a) 000; Hi 
0: (g) xyz;yxz; xyz;yxz; 

x+i, y+5, z+H §-y. x-t-i i-z; ^-x, i-y, z-t-H y-t-i, i-x, i-z. 

For BPO4, x=0.138, y=0.260, z=0.131; for BASO4, x=0.160, y=0.260, 
z=0.140. This arrangement, as a distortion of the high cristobalite group¬ 
ing [XII, (ae), (bd)]y consists of linked BO4 and P (or As) O4 tetrahedra 
(Figure 306a and b). 

Fia. 306a.—(left) Atoms of 
the structure chosen for 
BFO4 projected on one of 
the a-faces of its tetragonal 
cell. The smallest circles 
are P, the intermediate cir¬ 
cles B atoms. 

Fig. 306?>.—(right) A pack¬ 
ing drawing of a. The 0 
atoms have their ionic ra¬ 
dius; the size of the B atom 
is without significance. 

iflh) Every study of crystals with the CaW04 (d) arrangement has 
resulted in different oxygen parameters. A new set, for BaW04, is x=0.20, 
y=0.46, z=0.32. 

Potassium osmiamate, KOsNOj, is reported to have this structure with 
N and 0 atoms indistinguishable from one another. The parameters 
chosen for these atoms are x=0.23, y=0.05, z=-0.065. 

{ai) The positions found for the oxygen atoms in CaCr04 are those 
established in other crystals having the zircon grouping (/): u=0.17, 
v=0.34. 

{aj) X-ray measurements have been made upon a number of sub¬ 

stances with structures like apatite, Ca(F, Cl)Ca4(P04)3, (2). The hex¬ 

agonal unit prisms found in this way are recorded in Table II. 

In the apatite arrangement (2) fluorine atoms are in (a) OOJ; OOf. 

Another possible pair of positions, which could not be rigorously excluded 

by the observed intensities, would place them in the larger holes (b) 000; 

00§. It has been shown that in the lead compounds, PbioClj(M04)», 

where M= P or As, packing requires that the chlorine atoms must be in 
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these alternative positions (b). Parameters chosen to give suitable pack¬ 

ing throughout the structure for these two crystals and for the chlor-X- 

apatite of Table II are listed in Table III. The previously found values 

for apatite itself are included for comparison. 

Table II. Unit Cells of Apatite-like Substances 

Name Formula 

Apatite CaioCF, C1)2(P04), 5 9.36 6.85 
Chlor-X-Apatite Ca,o(Cl, X).(P04) 6 9.52 6.85 

Pyromorphite Pb.„Clj(P04). { 
f 9.95 
1 9.95 

f7.31 
17.32 

Mimetite Pbi„Cla(As04). 
\ 

[10.24 
110.36 1 17.43 

17.52 

V anadinite PbioCkCVO.), \ 110.31 
[10.47 1 ^.34 

[7.43 
Hydroxy-Apatite Ca,„(0H)j(P04). 9.40 6.93 
Tricalcium Phosphate Hydrate Ca,(H20),(P04), 9.25 6.88 
Oxy-Apatite CaioO(P04). 9.38 6.93 
Bone (Naptha extracted) 9.27 6.95 

Table HI. Parameters IN Apatite and Related Crystals 

Apatite Pyromorphite Mimetite Chlor~X~ Apatite 
Atom X V t X y z X y z X V z 

F, Cl 0 0 \ 0 0 0 0 0 0 0 0 0 
Ca. Pb(l) (f) i I 0 1 1 0 i i 0 1 } 0 
Ca, Pb(2) (h) i 0 \ \ 0.003 i i 0 i i 0 i 
P. As (h) 0.416 0.361 i 0.417 .369 i 0.411 0.392 i 0.417 0.361 i 
0(1) (h) i i \ .344 .480 i .317 .458 i .333 .500 i 
0(2) (h) .60 .466 \ .600 .464 i .644 .603 i .600 .467 J 
0(3) i i 0.062 .350 .260 0.063 .336 .272 0.061 .333 .250 0.063 

(ak) Unexpected intensities are observed from a number of compounds 

which obviously have the spinel, MgAl204, structure (fc). Two explana¬ 

tions have been offered: one is that the metal atoms are distributed hap¬ 

hazardly among all the metal positions, both (8f) and (16c); the other 

considers that half of the sixteen chemically alike atoms are in (8f) and 

that the rest together with the eight chemically alike metal atoms are 

irregularly distributed throughout (16c). The latter has been called an 

‘^equipoint’^ structure. Qualitative estimates of intensity do not seem 
to conflict with the second interpretation but more quantitative observa¬ 

tions and calculations are needed for final confirmation. Accurate param¬ 
eters have been found for the oxygen atoms in several compounds. These 
additional data are collected in Table IV. 

Cupric ferrite, CuFeaOi, when quenched, is cubic with the spinel struc¬ 
ture; if it is slowly cooled or annealed at 360° C for some time its pattern 

is said to be that of the tetragonal cell of Table I. 
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Table IV. Type and Parameter Found for 

Several Spinel Structures 

Type Parameter 

Normal *^EquipoinV^ u 

C0AI2O4 0.390 
FeAJ204 .390 

FeTiFe04 .390 
MgAl204 .390 

FeMgFe04 .390 
GaMgGa04 .392 
lnMgIn04 .372 
MgTiMg04 .390 

MnAl204 .390 
NiAl204 .390 
ZnAl204 .390 

ZnSnZn04 .390 

{al) The unit prism of CsOsNOj contains four molecules. Its Cs and 
Os atoms are said to be in the following positions of V^: 

Os: (c) 0uj;0uf and (d) ^u'J; iu'f with u=u'= | 
Cs: (e) xyz; xyz; x, y, |-~z; x, y, z+J with x=i, y=|, z= 

(am) Four molecules are included in the pseudo-tetragonal orthorhom¬ 
bic cells of CsRe04 and TlRe04. The space group has been given as Vjf. 

(an) Two differing determinations have been made of the structure 
of enargite, CU3ASS4. According to one the atoms of its single molecule 
cell are all in positions (g) of the orthorhombic space group Sulfur 
atoms are in one set of these special positions, copper and arsenic atoms, 
grouped together, in another. 

The unit prism of the other and presumably correct arrangement (see 
Table I) is twice as high in the direction of the b-axis, i.e. bo==7.43 A. 
The atoms in the bimolecular unit are distributed according to the fol¬ 
lowing cases of Cl^ : 

(a) uOv; u, v+J (b) xyz; X, |-y, z-f x, y+i, z+^; xyz 

with the parameters listed in Table V. The axes of this description differ 
from those of 1930, 352 by an interchange of X' and Y'. Like so many 

Table V. Parameters of the Atoms in CU3ASS4 

Atom No. per cell Positions X y z 

As 2 (a) 0.820 0 0 
Cud) 2 (a) .165 0 0.600 
Cu(2) 4 (b) .333 0.246 .990 
sd) 2 (a) .830 0 .360 
S(2) 2 (a) .140 0 .876 
S(3) 4 (b) .330 .255 .367 
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other sulfides this grouping is a system of sulfur tetrahedra linked by 
sharing corners and having metal atoms at their centers. As Figure 307b 
shows, the packing is excellent if the crystal is assumed to be made up 
of neutral atoms (As-S=2.21 A, Cu-S=2.31 A). 

Fig. 307a.—(left) The orthorhombic unit of enargite, CU3ASS4, projected on its a- 

face. The small circles are S, the largest circles are Cu atoms. 

Fig. 3076.—(right) A packing drawing of CU3ASS4 giving the atoms their neutral radii. 
Atoms of As are line-shaded. 

{ao) A new and simpler structure has been found for sulvanite, CU3VS4. 
With a cube edge half that previously chosen, the ummolecular cell has 
atoms in the following positions of (Figure 308): 

V: (la) 000 Cu: (3b) ^00; 0^0; 00| 
S: (4a) uuu; uuu; uuu; uuu with u=0.235. 

This leads to a V-S separation of 2.18 A; the Cu-S distance is 2.28 A. 

Fig. 308.—A cube face projection of 
the atoms in the new grouping estab¬ 
lished for sulvanite, CU3VS4. The 
smallest circles are V, the largest S 
atoms. 

©— 0 
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(ap) The edge lengths of the unit cube of several chromites, (Fe, Mg). 
(Cr, A1)204, have been measured. These lengths increase with the Cr203 

content. 
{aq) Powder photographs of magnetite, FesOi, made at various tem¬ 

peratures down to ca —170® C prove that the anomalous heat effect found 
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at —160® C is not due to a change in structure. Like MnO, FesOi is, 

however, reported to have a region in which it shrinks on being warmed 

(see Table II, Chapter XIA). 

{ar) Positions have been assigned to all the atoms in three substances, 

KMn04, KCIO4 and NH4CIO4, with the barite, BaS04, structure (a). 

These crystals have units which are almost identical in size and it is prob¬ 

able that their real atomic positions are practically the same. Neverthe¬ 

less the structures proposed for the permanganate and for the perchlorates 

show important differences (Figures 309 and 310). The KMn04 deter¬ 

mination rests on photographic spectral data; the observations on KCIO4 

and NH4C IO4 are more quantitative spectrometric measurements. It is, 

however, difficult to be sure of the deductions from the latter results. 

T-he published parameters are obviously wrong: they correspond to an 

utterly impossible grouping. If the drawing of the perchlorate paper 

(1932, 177) is assumed to be correct and the parameters are altered to 

fit it, a structure is obtained which yields the interatomic distances stated 

in the paper and which therefore is probably the intended one. These 

parameters, and the values for KMn04 expressed in terms of a unit with 

Fig. 309.—(left) The unit cell of the 
orthorhombic structure found for 
KMn04 projected on its b-face. 
Atoms of the MnO* ions are con¬ 
nected by light lines. 

P'lG. 810.—(right) The arrangement 
selected for KCIO4 projected upon 
its b-face. Atoms of the CIO4 tetra- 
hedra are united by light lines. 

Table VI. Pakametehs op the Atoms in KMnO., KCiO. and NHiCIO. 

KMnOt KClOi* NHtClOt 
Atom Positions ^yzxyzxy 

KorNH. (c) 0.19 i 0.16 0.192 i 0.167 0.197 J 
Mn or Cl (c) .07 i .67 .075 i .689 .067 i 
0(1) (c) .99 i .49 .176 i .550 .169 4 
0(2) (c) .26 i .61 -.078 i .606 -.078 4 
0(3) (d) .07 0.03 .80 .083 0.042 .819 .076 0.042 

0.172 
.694 
.660 
.600 
.819 

* These values are obtained from the parameters of 1932, 177 by adding 4 to the 
2 coordinates of Cl, 0(1) and 0(2), and by changing the sign of x of 0(2) and z of 0(3). 



STRUCTURES OF THE TYPE R,{MX,)y 73 

the same origin, are listed in Table VI. The necessary coordinates (as 
stated on p. 283 of book) are: 

(c) ±(uiv); ±(u+|, h l-v) 
(d) ±(xyz); ±:(x, -2—y, z); zb(x+|, y, i—z); db(x-4-^, 2^7? I'^z). 

It is interesting that in spite of the very different positions of atoms 0(1) 
and 0(2), neither of these arrangements gives unreasonable atomic separa¬ 
tions and each is supposed to be required by the observed data. Addi¬ 
tional work will undoubtedly provide another demonstration of the fact 
that acceptable interatomic distances and qualitative agreement with a 
limited number of intensity estimations are insufficient to establish most 
structures with many parameters. 

(as) Atomic positions have been found in two crystals isomorphous 
with K2SO4 (m)—K2Cr04 and (NH4)2BeF4. Their parameters (Table VII) 
are essentially those previously chosen for the alkali sulfates. The values 
recorded for K2Cr04 in Table VII have been derived from the conclusions 
of 1931, 501 by reversing the signs along c and adding one half. 

Table VII. Parameters op the Atoms in K2Cr04 and (NH4)2BeF4 

For KiCrO, 
Atom No. per cell X y z 

K(l) 4 1 4 0.417 0.644 
K(2) 4 i -.305 0 
Cr 4 i .417 .230 
0(1) 4 i .417 .019 
0(2) 4 i .561 .300 
0(3) 8 0.028 .345 .300 

For {NEi^iBeFi 
Atom X y z 

NH4(1) i 0.393 0.675 
NH4(2) i -.325 -.046 
Be i .417 .263 

F(1) i .390 .051 
F(2) i .573 .300 
F(3) 0.024 .353 .350 

(at) The unit cube of K2Mg2 (804)3 contains four molecules. Its space 
group has been found to be T^. 

(au) The mineral triphylite, Li(Fe,Mn)P04, and the compound Li3p04 
have orthorhombic cells similar in size and shape to the unit of chryso- 
beryl, BeAl204, (Z). It has been inferred that their structures too are 
similar. 

(av) The monoclinic unit of Li2S04 contains four molecules. An 
arrangement, based on spectral photographs, places all its atoms in the 
general positions (e) ±(xyz); dr(^-x, y+§, z) of The chosen param¬ 
eters, recorded in Table VIII, give the grouping illustrated in Figure 311. 

(aw) The monoclinic cell of (NH4)2Cr04 is bimolecular. The space 
group is reported to be Cj. 

(ax) Ammonium osmiamate, NH4OSNO3, like CsRe04 (am), has a 
four-molecule pseudo-tetragonal orthorhombic unit suggesting the tetrag¬ 
onal CaW04 (d) arrangement. The space group assigned to NH4OSNO3, 
V^, is different from that proposed for CsRe04. 



74 THE STRUCTURE OF CRYSTALS 

The rubidium and thallium salts, RbOsNOs and TlOsNOa, are struc¬ 
turally isomorphous with NH4OSNO3. It is thought that the rubidium 
and osmium atoms in the general positions of V'‘, xyz; x+-|, §-y, z; x, 

2—z; 5—X, y, z+h have as approximate parameters, for Rb: x=0.03, 

y=l> z=l; lor Os: x=0.03, y=h z=s. 

Table VIII. Pahametebs of the Atoms in LbSOi 

Atom X 

Lid) 0.205 
Li(2) .455 
S .319 
0(1) .492 
0(2) .186 
0(3) .280 
0(4) .319 

y z 

0.582 0.375 
.582 .125 
.061 .250 

-.042 .250 
-.042 .099 
-.042 .401 

.367 .250 

Fig. 311a.—(left) The monoclinic structure determined for Li2S04 projected on its 
b-face. The largest circles are O, the smallest arc Li atoms. 

Fig, 31 1&.—(right) A packing drawing of a showing Li ions and SO4 tetrahedra. 

(ay) Two minerals, adelite and tilasite, each of which is essentially 
CaMg(0H)As04, have units similar in shape and size though the first is 
orthorhombic, the latter monoclinic. Both cells contain four molecules. 

(az) The space group of descloizite, PbZn(0H)V04, has been fixed as 
Vi®; its cell includes four molecules. The following minerals are said to 
be isomorphous, with Cu sometimes replacing some Zn: cuprodescloizite, 
mottramite, psittacinite, chileite, eusynchite and dechinite. 

(ba) The mineral beryllonite is orthorhombic both in its crystallography 
and its X-ray data. The optical anomalies it shows have, however, been 
considered to be sufficiently marked to prove its monoclinic symmetry. 
For such a crystal the 12-molecule cell of the table is without doubt too 
large to be the true unit. 
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(66) The monoclinic cell of ammonium persulfate, (NH4)2S20s, is bi- 
molecular. From Laue and spectral photographs it has been concluded 
that the space group is Cjh with all atoms in the general positions (e) 
di(xyz); d=(x+|, |-y, z+-|)[see p. 58]. The chosen atomic parameters 
are listed in Table IX. As can be seen from Figure 312a and b, this de¬ 
termination yields an S2O8 ion which consists of two SO4 tetrahedra joined 
through an oxygen-to-oxygen bond (0-0=1.46 A). 

The cesium analogue, CS2S2O8, is isomorphous. Cesium parameters 
have been taken as x=0.H4, y=0.125, z=0.228; the parameters for the 
other atoms have the same values as in the ammonium salt. 

Table IX. Parameters OF THE Atoms in (NH4)2S,Os 

Atom X y Z 

NH4 0.144 0.125 0.250 
S .136 .350 .708 
0(1) .042 .500 .611 
0(2) .028 .194 .680 
0(3) .208 .417 .930 

0(4) .292 .347 .597 

Fig. Zl2a,—iXe}t) The monoclinic arrangement found for (NH4)2S208 projected on its 
b-face. The largest circles are NH4 ions: the atoms of S2O8 ions are connected by 
light hnes. 

Fig. 3126.—{right) A packing drawing of a. The NH4 ions are line-shaded. 

(6c) Four molecules are to be found in the unit prism of anhydrous 
ZnS04. Its space group has not yet been established. 

(bd) The sulfide mineral stannite, Cu2FeSnS4, has a tetragonal two- 
molecule unit. Photographic data have placed its atoms in the following 
special positions of Vd : 
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Fe; (a) 000; HI Sn: (b) 00|;||0 

Cu: (d) |0|; lOf; Oil; 0|-| S: (i) uuv; uuv; uuv; tiu? 

and four similar positions about |||. 

Like most other sulfides this structure for stannite (Figure 312c and d) 

can be considered as an assemblage of tetrahedra with sulfur at their 

centers. The interatomic distances that prevail are Cu-S=2.31 A, Sn-S= 

2.43 A, Fe-S=2.36 A. Of these the iron-sulfur separation is exceptionally 

large. 

Fig. 312c.—(left) The tetragonal structure found for 
stannite, CujFeSnS^, projected on an a-face. Atoms of 
Sn, Cu, Fe and S are represented by circles of decreas¬ 
ing size. 

Fig. Zl2d.—(right) A packing drawing of c in wliich atoms 
have their neutral radii. Atoms of Fe are line-shaded. 
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(j) A number of compounds isomorphous with Ba2Ni(N02)6 are re¬ 
ported to be cubic and to have the (NH4)2PtCl6 structure (a). A more 
detailed study of one or more of these crystals is needed to insure that 

the symmetry really is cubic and to establish the positions of the nitrogen 
and oxygen atoms. 

(/c) Several complex nitrites isomorphous with Cs3Rh(N02)6 are said 
to be cubic. Their atomic arrangements are considered to be like that of 

(NH4)3FeF6 (g) with nitrogen in place of fluorine and oxygen in positions 
(48f) uuO; etc. (1930, 352, p. 113). For several of these crystals u(N) 

has been chosen as 0.26, u'(0) as 0.13. Such a distribution is improbable 

since it would cause the oxygen atoms to be shared between neighboring 

nitrogen atoms instead of forming distinct NO2 groups. 

(l) The unit cubes of Ca3[Al(OH)6]2 and of Sr3[Al(OH)6]2 have been 
described as containing eight molecules; their space groups are given as 0^ • 

(m) The unit cubes of the alkali fiuophosphates isomorphous with 

KPFe contain four molecules. Their space group is thought to be P and 

it is asserted that the observed intensities conflict with the idea of PFe 

radicals. Further work is obviously needed before an3dhing is known 

about the structures of these crystals. 

(n) The bromine parameter in K2SeBr(5 has been determined as 0.245; 

in (NH4)2SeBr6 it lies between 0.24 and 0.25. It has been stated that 
for all similar compounds listed in Table I, u(Cl) is greater than 0.23 
and less than 0.25. 

(o) The compound NaK2AlF6 has been given a structure which is a 

slight distortion of the (NH4)3FeF6 arrangement (g). Aluminum atoms 
are at (4b) 000; etc., Na at (4c) etc. The potassium atoms are in 
(8h) with a parameter u=0.25 thus making their positions identical with 
(8e) Hi; etc. The fluorine atoms are put in general positions (d) xyz; 
etc. of Tj (see p. 268 of book) with x=0.03, y=0.01, z=0.22. No data 
have been published which allow an estimate of the accuracy of this 

determination. 
77 
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Table I. The Ckystal Steuctitres of the Compounds Ri(MX«)y 

Substance, symmetry and structure type a„ or o References 

BajNi(N02), Cubic O’) 10.07 
Baj[^Rh(N02)e32 Cubic or (r) 10.70 

Pscudo-cui)ic 
Ca2[Al(OH)j2 Cubic (/) 12.56 
Cs2AgAuCI« Cubic (s) 5.33 
Cs2Au+Au+++C]6 Cubic (s) 5.33 
Cb2Co(N02)« Cubic (k) 11.15 
Cs,Fe(CN)e (e) 
Cs.,Ir(N02). Cubic (k) 11.17 
CsPFe Cubic (m) 8.19 
Cs2PbCle Cubic (NH4)2PtCl, 10.415 

(a), (n) 
Cs2PtClfl Cubic (NIRljPtCl* 10.185' 

(a), (n) 
Cs,Rh(N02), Cubic (k) 11.30 
CsjSeCl, Cubic (NH4)2PtCl, 10.260 

(a), (w) 
CssSnCI, Cubic (NH4)2PtCle 10.348 

(a), (n) 
Cs2TeCl, Cubic (NH4)2PtCU 10.449 

(o), (n) 
CssTiCl, Cubic (NH4)2PtCl6 10.219 

(a), (n) 
Cs2ZrCl« Cubic (NH4)2PtCl6 10.407 

(a), (n) 
K2BaCo(N02), Cubic (/) 10.45 
KsBaNiCNOj)^ Cubic (/) 10.67 
K2CaCo(N02). Cubic (/) 10.17 
K2CaNi(N02), Cubic (/) 10.29 
K2Co(N02). Cubic (?) (k) 10.44 
K,Cr(CN), (d) 
KsFeCCN), (d) 
K,Ir(CN), (d) 
KiIrCNOj), Cubic ik) 10.57 
K,Mn(CN), id) 
KjNaAlF, Cubic (o) 8.69 
K2Ni(N02), Cubic (?) (P) 10.49 
KjOsNCbt 
KjOsOjCl, Tetragonal (<?) 6.99 
KPF, Cubic {m) 7.76 
KjPtCl, Cubic (NH,)2PtCl, 9.725 

(o), (re) 
K,Rh(N02), Cubic (*) 10.63 
KiSeBrj Cubic (NH4)2PtCl, : 10.363 

(a), (re) 

1933, 136. 
1933, 134. 

1933, 70. 
1934, 78. 
1934, 78. 
1933, 133. 
1931, 314. 
1933, 132. 
1931, 407, 408. 
1933, 126; 1934, 325. 

1932, 325; 1933, 54, 
120; 1934, 325. 
1933, 134. 
1934, 325. 

1933, 126; 1934, 325. 

1932, 326; 1933, 126; 
1934, 325. 
1934, 325. 

1934, 325. 

1931, 111. 
1931, 111. 
1931, 111. 
1931, 111 

1931,111a; 1933,133. 
1931, ;U4. 
1931, 314; 1933, 83. 
1931, 314. 
1933, 132. 
1931, 314. 
1932, 311. 
1931, 111a. 
1933, 483. 
1934, 109. 
1931, 407, 408. 
1934, 325. 

1933, 134. 
1933, 200. 

•According to 1933, 64, a„=.10.120 A. 
f Journal not available. 
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Substance, symmetry and structure type 

K2SnCl« Cubic (NH4)sPtCl, 
(a), (n) 

K2SrCo(N02)6 Cubic (/) 
K2SrNi(N02)fl Cubic (/) 
KjTeClc Cubic (NIl4)iPtCl. 

(a), (n) 
(NH4)3Co(N02)6 CuVjic (k) 
(NIl4)3CrFfl Cubic {g) 
(NH4)3lr(N02)6 Cubic (k) 
Nii4rF6 Cubic (m) 

(NH4)2PbCl6 Cubic (NH4)2PtCl, 
(a), (n) 

(NH4)2PtClo Cubic (NH4),PtCl. 
(a), (?t) 

(NH4)3KhfN02)fi Culiic (k) 
(NTl4)2SeBr, Cubic (NIl4)4PtCl, 

(a), (n) 
(NIl4)2SeClo Cubic (Nn4)2Ptci. 

(a), (») 

(NH4)2SiF6 Hexagonal (0 
(Nn4)2SnCl6 Cubic (NIl4),PlCl, 

(a), (n) 
(NH4)2TeCl« Cubic (NH4)2PtCl, 

(a), (n) 
(NH4)3VFo Cubic (!7) 
NasAlFe (h) 
Pl>2Ni(xN02)« Cubic O') 
Pb3[Rh(N02)6]2 Cubic or (r) 

Pseudo-cubic 
Rb3Co(N02)6 Cubic (k) 
R1^3Fe(CN)6 Monoclinic K,Fe(CN), 

id) 

Rb3lr(N02)« Cubic (k) 
Rb2PbCU Cubic (NH4)2PtCl, 

(a), (ji) 
Rb2PtCl« Cubic (NH4)2PtCl, 

(a), (re) 
Rb3Rh(N02)« Cubic (k) 
Rb2SeCI« Cubic (NH4)2PtCl. 

(o), (re) 
RbzSnCIe Cubic (NH4)jPtCl, 

(a), (re) 
RbaTeClfl Cubic (NH4)2PtCl. 

(a), (re) 
RbaTiCle Cubic (NH4),PtCl. 

(o), (n) 
RbaZrCU Cubic (NH4)8PtCI, 

(a), (re) 
SraCAKOH)*! Cubic (1) 
Sr2Ni(N02)« Cubic 0) 
Tl8C0(N02)6 Cubic (k) 

9.983 

c„ or a References 

1934, 325. 

10.23 
10.49 
10.143 

1931, 111. 
1931, 111. 
1934, 325. 

10.81 
9.01 

10.73 
7.92 

10.135 

1933, 133. 
1932, 356. 
1933, 132. 
1931, 407, 408. 
1934, 325. 

9.834 1934, 325. 

10.91 
10.46 

1933, 134. 
1932, 425. 

9.935 1934, 325. 

5.76 
10.038 

4.77 1934, 87. 
1934, 325. 

10.178 1934, 325. 

9.04 

10.55 
10.53 

1932, 355. 
1932, 311. 
1933, 135. 
1933, 134. 

10.73 
13.74 8.63 
b,=10.66, /3=90°3' 
10.77 
10.198 

1933, 133. 
1933, 83. 

1933, 132. 
1933, 126; 1934, 325. 

9.882 

10.83 
9.978 

1932, 325; 1933, 54. 
126; 1934, 325. 
1933, 134. 
1934, 325. 

10.100 1933, 126; 1934, 325. 

10.233 1933, 126; 1934, 325. 

9.922 1934, 325. 

10.178 1934, 325. 

13.02 
10.54 
10.72 

1933, 70. 
1933, 135. 
1933, 133. 
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Substance, symmetry and structure type a„ or a References 

Tl8lr(N02)e Cubic (k) 10.73 1933, 132. 

TJjPtCl* Cubic (NH4)jPtCl» 9.755 

(a), (n) 

1934, 325. 

TlaRh(N02)fl Cubic (k) 10.91 1933, 134. 

Tl2SiF« Cubic (Nn4),PtCl, 8.60 
(a) 

1933, 460. 

TlaSnCIa Cubic (NIbijPtCl, 9.970 
(a), (n) 

1934, 325. 

TkTeCU Cubic (NHdjPtCl, 10.107 
(a), (n) 

1934, 325. 

(p) The compound K4Ni(N02)6, which probably has less than cubic 

symmetry, has been given a cubic or pseudo-cubic unit containing four 

molecules. 

(q) The tetragonal unit of potassium osmyl chloride, K2OSO2CI4, is 

bimolecular. Its atoms, with an arrangement which is a slight distortion 

of the familiar (NH4)2PtCl6 grouping (o), are in the following special 

positions of DJh: 

Os: (a) 000; m K: (d) 0|i; ^Oi; 0||; M 
0: (e) OOu'; OOu'; u'; §, u'-f? with u'=0.21 

Cl: (h) uuO; uuO; u+5, 5-u, u-f|, u+-^, uuO; uuO; 

^-u, U-I-5, I; 5-u, §-u, with u=0.230. 

(r) Unit cubes or pseudo-cubes of Ba3[Rh(N02)6]2 and Pl)3[Rh(N02)6]3 

are supposed to contain two molecules. 

(s) Powder patterns obtained from the triple halides Cs2AgAuCl6 and 

Cs2Au+Au+++C1<5 have only the lines required by a perowskite, CaTiOs 

[XV, (d)], arrangement. Such a unit would contain only half a molecule; 

hence it is suggested that the atoms have as coordinates: Cs: 000, Cl: 

OM; fOI; HO, Ag (or Au+) and Au+++ at in different cells. Though 

the structure probably approaches such a simple atomic distribution, the 

true unit undoubtedly is a larger one. 

(t) The unit prism established for the hexagonal modification of 

(NH4)2SiF(s is unimolecular. A structure has been proposed which places 

atoms in the following special positions of 0,^: 

NH4: (d) ffu; |-Juwithu=f Si: (a) 000 

F: (i) ±(uuv); ±(20, u, v); ±(u, 2u, v) with u=0.136, v=ca i. 

Practically no data have been published in support of this arrangement. 



Chapter XVIIIA. Structures of Hydrates and 
Ammoniates and of Miscellaneous 

Inorganic Compounds 

Hydrates and Ammoniates 

The hydrates thus far analyzed by X-ray methods fall into three 
types. Most of them, and all of the ammoniates, are coordination com¬ 
pounds in which the H2O or NH3 molecules are closely bound to the 
metal atoms present. In a few of the crystals described below water 
molecules are not thus associated with cations but occupy holes in the 
lattice. Such a water molecule is present in Pd(NH3)4Cl2*H20 (ba); the 
fifth H2O in CuS04-5H20 is similarly held. Though these H2O molecules 
cannot be driven off without destroying the rest of the atomic arrange¬ 
ment, in many other ways their bonding resembles that seen in the zeolites. 
To the third type belong those compounds, like AI2O3 H2O or Al203*3H20, 
with water so firmly held that it may be present as hydroxyl groups. 
Many minerals contain such water of constitution.^^ 

O' 

0 ®© 0 

0 

0 

0 b® 
_1 

Fig. 313a.—{left) A portion of the di- 
aspore, AlaOs-HgO, structure pro¬ 
jected on an a-face. Small circles 
are A1 atoms. Water molecules, as 
such, do not exist in this grouping. 

Fig. 3136.—{right) A packing draw¬ 
ing of a. 

81 
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Table I. The Crystal Stbiicthkes of Hydrates and Ammoniates 

Substance^ symmeAry and stmcturc type a„ c„ or a References 

AI2O3 • H2O Ortho¬ AI2O3H2O 4.43 2.80 1932, 121; 1933, 462. 
(Diasporc) rhombic {a), (ae) b„-9.3G 

CaCr04H20 Ortho¬ (af) 7.99 8.11 1932, 106. 
rhombic b„=12.77 

2(CaS04) -ca H2O Hexagonal (09) 6.76 6.24 1934, 46. 
Fe203H20 Ortho¬ AI2O3 • H2O 4.64 3.03 1931, 132; 1932, 168. 
(Goethite) rhombic (a), (ae) b„-10.0 

FesOg-HjO Ortho¬ (ae) 3.87 3.06 1931, 132. 
(Lepidocrocite) rhombic b„=12.4 

3(KPbCl3)H20 Tricliiiic 14.35 14.50* 1934, 172. 
b„=9.05 

Li2S04*H20 Monoclinic (hr) 5.43 8.14 1934, 361. 
b„=4.83, /3 = 107°35' 

MnsOs-HsO Ortho¬ (ah) 4.41 2.83 1931, 112. 
(Manganite) rhombic b„=5.19 

NasCOs-rHO Ortho¬ (hs) 10.72 5.24 1934, 321. 
rhombic b„=6.44 

Rb2(CrF5-H20) Cubic (NH4)2PtCb 8.38 1932, 356. 
(ni) 

81)204 •H2O Cubic (ai) 10.24 1933, 316. 
(Stibiconite) 

Tl2(VF6H20) Cubic (NH4)2PtCl« 8.45 1932, 355. 
(m) 

AgN03-2NH8 Ortho¬ (bt) 8.00 6.29 1934, 58. 
rhombic b„=10.58 

CaCr04*2H20 Ortho¬ (aj) 16.02 5.60 1932, 106. 
rhombic b„=11.39 

CaHP04-2H20 Monoclinic (ak) 10.47 6.28 1931, 149. 
(Brushite) b„=15.15, ^i=98°58' 

CaS04-2H20 Monoclinic (rf), (ak) 1931,149; 1934, 347a. 
(Gypsum) 

Cd (0102)2 •2H2O Monoclinic (al) 8.86 9.76 1931, 282. 
b„-7.12, /3=90°18' 

K2CuCl4-2H20 Tetragonal (c), (am) 1934, 48. 
(NH4)2CuBr4- Tetragonal (NH4)2CUC14 • 7.83 8.14 1933, 370. 
2H2O 2H2O (e)j (am) 

(NH4)2CUC14- Tetragonal (e), (am) 1934, 48. 
2H2O 

NaBr-2H20 Monoclinic (an) 6.59 6.51 1932, 482. 
b .„-10.20, 0=112°3O' 

NaI-2H20 Triclinic (ao) 6.85 7.16 1932, 482. 
b„-5.76, a=98°, ^=119°, y «68r 

a-Pt(NH,)2Cl4 Tetragonal (ap) 5.72 10.37 1933, 109. 
i9-Pt(NH8)2Cl4 Ortho¬ (ap) 10.0 6.0 1933, 109. 

rhombic bo-11.2 

* For 3(KPbCl,) HA a-7-ca 90°, ^-113°. 
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Substance, symmetry and structure type a^ c^ or a References 

Zn(C102)a'2H20 Monoclinic (al) 

Al203‘3H20 Monoclinic (aq) 

(Gibbsite) 

Ba(C104)2 *31120 Hexagonal (hq) 

LiC104*3H20 Hexagonal (bp) 

Lil-31120 Hexagonal (/), (bp) 

Ag2S04*4NH3 Tetragonal (ar) 

BaNi(CN)4*4H20 Monoclinic (as) 

BaPt(CN)4*4H20 Monoclinic (as) 

BeS04 *41120 Tetragonal (h), (at) 

Ortho- (au) 

rhombic 
1, C[Co[gfi;',;]Cl Ortho- iav) 

rhombic 
Na2B407-4Hj0 Monoclinic (aw) 

(Kernite) 

[Pt(NIl3)4]PtCl4 Tetragonal (ox) 
(Magnus’ Green Salt) 
[Pt(NH,)4]PtCl4 (ox) 
(Magnns’ Red Salt) 

Zn(C10.)2-4NH3 Cubic (ay) 

CuS04-5H20 Triclinic (i), (ox) 

8.67 9.38 1931, 282. 
b„=6.88, ;8=90°20' 

8.6236 9.699 1934, 170. 
bo=5.0602, |3=85°26' 

7.28 9.64 1934, 290. 
7.71 6.42 1934, 290. 

1934, 290. 
8.43 6.35 1934, 59. 

11.71 6.63 1934, 32, 33. 
b„=13.48, /3=104°50' 

11.89 6.54 1933, 72. 
bo = 14.08, ^=103°42' 

8.02 10.75 1931, 401; 1932, 31. 

18.05 6.95 1933,455. 
b„=8.10 

14.36 13.98 1933, 456. 
b„= 17.97 

15.65 7.01 1932, 156, 157. 
b„=9.07, 0=1O8°52' 

6.297 6.42t 1931, 193; 1932, 119. 

1931, 193; 1932, 119. 

10.250 1933, 53. 
5.12 5.97 1933, 32; 1934, 15, 

15a. 
a=82°16', /3=107°26', 7=102°40' 

H3PWi204a-51120 Cubic (6/c) 12.14 1934, 131. 
Pd(NH,)4Cl2-H50 Tetragonal (6a) 10.302 4.34 1933, 109; 1934, 71. 
Pt(NH,)4Cl2-ll20 Tetragonal (bo) 10.44 4.21 1932, 114; 1933, 109. 
AlCls-61120 Hexagonal (66) 7.85 97'’±20' 1934,3. 
Bal3-6H20 Hexagonal SrCl2-6H20 8.90 4.60 1931, 185. 

(p) 
CaBrj-eiljO Hexagonal SrClj-OHjO 7.97 3.97 1931, 184. 

(p) 
CaBr2-6NH, Cubic (NH4)2PtCl, 10.706 1933, 66. 

(m) 

CaCl2-6H20 Hexagonal SrCb-OHjO 7.86 3.905 1931, 184. 

(p) 
Cali-eHjO Hexagonal SrCb-OHjO 8.4 4.25 1931, 185. 

(P) 
Cal2-6NH, Cubic (NH4),PtCI, 11.24 1933,66. 

(m) 
Cd(BF4)a-6NH, Cubic (NH4)2PtCl, 11.380 1933,54. 

(m) 
CdBrj-6NH, Cubic (NH4),PtCl, 11.540 1933, 66. 

(m) 

t In 1931, 193, Co-6.16 A. 
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Substancef symmetry and structure type c^ or a References 

Cd(C104)2-6NH, Cubic (NH4)8PtCl6 11.588 
(m) 

1933, 63. 

Cdla-eNH, Cubic (Nn4)nci, 11.046 
(m) 

1933, 53. 

Cd(S08F)2-6NH, Cubic (NH4)3PtCl« 11.619 
Im) 

1933, 54. 

CdS04-(NH4)2S04-61120 (n) 9.35 6.27 1931, 211. 
Monoclinic b„-12.705, /S-106'’41' 

CCo-6NH,](BF4)2 (m) 11.265 1932, 195; 1933, 54, 
Cubic 

[Co-6NH3](BF4)s (NH4)aFeF. 11.211 1933, 53. 
Cubic il) 

CCo-6NH3]Br2 Cubic (NH4)sPtCl, 10.389 
(m) 

1933, 55. 

[Co-6NH,]Cl2 Cubic (NH4)2PtCl, 10.10 

(m) 
1933, 55. 

CCo-6NH3](C104)2 (to) 11.449 1932, 195. 
Cubic 

[Co-6NH3](C104)s (I) 11.384 1932, 195. 
Cubic 

[Co-GNHs]!, Cubic (NH4)3PtCl, 10.914 
(m) 

1933, 55. 

CCo-6(NHrCH3)]l2 (NH4)2PtCl, 12.05 1933, 55. 
Cubic (m) 

[Co-6NH3](PF3)2 {NH4)jPtCl, 11.942 1933, 53. 
Cubic (m) 

[Co*6NH3](PF6)3 (NH4),FeF, 11.670 1933, 53. 
Cubic (1) 

[Co-6NH3](S03F)2 (NH4)jPtCl, 11.490 1933, 54. 
Cubic (m) 

CoS04-(NH4)2S04-6H20 (n) 9.23 6.23 1931. 150. 
Monoclinic bo=12.49, /3=106°56' 

CrCls • 6H2O Hexagonal (56) 7.95 97°±20' 1934, 3. 
Fe(BF4)2-6NH3 Cubic (NH4)3PtCI, 11.340 

(w) 

1933, 54. 

F eBr2 • 6NH3 Cubic (NH4)3PtCl, 10.468 
(m) 

1933, 53. 

FeCl2-6NHa Cubic (NH4)3PtCl. 10.148 
(m) 

1933, 53. 

Fe(C104)2*6NH, Cubic (NH4),PtCl. 11.517 
(to) 

1933, 53. 

Fel2 • 6NHj Cubic (NH4)jPtCl, 10.965 
(to) 

1933, 63. 

Fe{S03F)2-6NH, Cubic (NH4)2PtCl, 11.644 
(to) 

1933, 54. 

FeS04*(NH4)3S04*6H20 (n), (6c) 9.28 6.22 1931, 211. 
Monoclinic b„-= 12.57, /S-lOe-SO' 

Mg(BF4)2*6NH, Cubic (NH4),Pta, 11.337 
(to) 

1933, 54. 
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Substance, symmetry and structure type a,, c„or a References 

MgBrs'GHjO Monoclinic (bd) 10.25 6.30 1934,4. 
b„=7.40, /3-93°30' 

MgBrj-eNH, Cubic (NHilsPtCl, 10.468 1933,53. 
(m) 

MgClj-eHaO Monoclinio (bd) 9.90 6.10 1934,4. 
b„=7.15, /9=94‘’±20' 

MgClj-6NH, Cubic (NHalaPtCU 10.158 1933,53. 
(m) 

Mg(C104)j-6NH, Cubic (NHiljPtCl, 11.531 1933,53. 
(w) 

Mgla-ONH, Cubic (NHilaPtCl, 10.978 1933,53. 
(m) 

MgS04 K2S04-6H20 (n) 9.04 6.095 1931, 211. 
Monoclinic 6^=12.24, /3=104°48' 

MgNH4As04-6Ha0 (bo) 7.00 11.14 1933,397. 
Orthorhombic b„=6.14 

MgS04-(NH4)aS04-6Ha0 (n), (be) 9.28 6.20 1931,211; 1932,220. 
Monoclinic b„=12.57, /3=107°6' 

MgSe04-(NH4)2Se04-6H20 (n) 9.42 6.30 1931,211. 
Monoclinic b,j= 12.72, ^=106°27' 

MgS04-Tl2S04-6H20 (n) 9.22 6.185 1931,211. 
Monoclinic 1 

Mn(BF4)2-6NH, Cubic (NH4)aPtCl, 

(m) 
MnBr2-6NH, Cubic (NH4)2PtCl, 

(m) 
MnCl2-6NH3 Cubic (NH4)2PtCl. 

(m) 

Mn(C104)2-6NH8 Cubic (NH4)2PtCl, 

(m) 
MiiIa-GNHs Cubic (NH4)aPtCl, 

(m) 

Mn(S03F)2-6NH3 Cubic (NH4)aPtCl, 

(m) 

Ni(BF4)2-6NH8 Cubic (NH4)2PtCl. 

(m) 
NiBr2-6NH8 Cubic (NH4)2PtCl, 

(m) 

NiCl2-6NH8 Cubic (NH4).PtCl, 

(m) 

Ni(C104)2-6NH8 Cubic (NH4)2PtCl, 

(m) 
Nil2-6NH, Cubic (NH4).PtCl, 

(m) 

Nila-6(NH2CH,) Cubic (NH4)aPtCI. 

(m) 

Ni(PFe)3*6NH, Cubic (NH4),PtCl, 

(m) 
Ni(SO«F)2-6NH, Cubic (NH4)jPtCl, 

(m) 

i„=12.42, ^=106°30' 
11.374 1933, 54. 

10.519 1933, 53. 

10.198 1933, 53. 

11.578 1933, 53. 

11.037 1933, 53. 

11.593 1933, 54. 

11.219 1932, 195; 1933, 54. 

10.34 1933, 55. 

10.064 1933, 55. 

11.410 1932, 195. 

10.875 1933, 55. 

12.027 1933, 55. 

11.912 1933, 53. 

11.445 1932, 195; 1933, 54. 
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Substance, symmetry and structure type Oo c^ora References 

N iS04 • 6H2O Tetragonal (be) 6.80 18.3 1932, 32; 1933, 102. 
SrBra • 6H2O Hexagonal SrCh-6HjO 

(p) 

8.212 4.146 1931, 183. 

SrCl2 • 6H2O Hexagonal SrCh-bHjO 

(P), (bf) 

7.906 4.07 1931, 185. 

Srl2 • 6H2O Hexagonal SrCb-eHjO 

(p) 

8.51 4.29 1931, 184. 

2nBr2-6NHa Cubic (NH4)2PtCl, 
(m) 

> 10.46 1933, 56. 

Znl2-6NH3 Cubic (NH4)2PtCl, 
(m) 

, 10.964 1933, 53. 

2nS04-(NH4)2S04-6H20 (n) 9.205 6.225 1931. 211. 
Monoclinic 1 3.=12.475, ^=106°52' 

[Co^Hj) J2SO4 • 3H2O 

Monoclinic 

(bn) 11.80 7.42 

b<,-10.60, ;3=98°39' 
1933, 454. 

MgPt(CN)4-7H20 (t), (bg) 14.6 6.26 1932. 60. 
Tetragonal 

MgS04-7H20 Ortho- 1930, 378; 1932. 19. 
rhombic 

SCdSOi • 8H2O Monoclinic (bh) 14.65 16.35 
b„=11.84, ^=34°48' 

1932, 138. 

Sr02 • 8H2O Tetragonal 
Na3SbS4 • 9H2O Cubic * 

(v), (bi) 1932, 322. 
1933, 483. 

4(P04)A1«2A1(0H),.9H20 (bl) 7.27 10,80 1933, 225. 
(Wavellite) Orthorhombic bo=14.41 
Zn,4(AsO<) ,011-121120 

(Legrandite) Monoclinic 
(bm) 12.70 10.18 

b„=7.90, /S=75'’35' 
1932, ]30. 

2Na,P04-NaF-19H20 (bj) 27.86 1933. 322. 
Cubic 

GdPMoi2O4„-30H2O (bk) 23.1 1933. 198. 
Cubic 

HjPMoiAo-SOHjO (bk) 23.281 1933. 198. 248. 249. 
Cubic 

NdPMo,204o-30H20 (bk) 23,10 1933. 198. 
Cu})ic 

SaPMou04o-30H20 (bk) 23.1 1933. 198. 
Cubic 

BcjSiWAo^lHjO (bk) 23.3 1933. 198. 
Cubic 

Mg2SiMoi204o • 3IH2O (bk) 23.04 1933. 198. 
Cubic 

NijSiMo,204o-31H20 (bk) 23.0 1933. 198. 
Cubic 

* The journal describing this work was not available. 
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(ae) The orthorhombic units of diaspore, Al203‘H20 or H2AI2O4, and 
of goethite, Fe203-H20, are bimolecular. Studied independently, they 
have been given identical arrangements. All atoms are in special posi¬ 
tions (c) of Vh : uvj; uvf; u+§, |-v, f; i-u, v+J, i with the values of 
u and V listed in Table II. Except for Co which is half as long, the units 
of these oxides and of chrysoberyl, BeAl204, are similar in size and shape. 
As is readily seen by comparing Figure 313 with Figure 219 (book, p. 293) 
the two groupings are similar, both being packings of oxygen atoms with 

the small metal atoms lying in interstices. 
The other monohydrate of Fe203, lepidocrocite, also has a bimolecular 

orthorhombic unit but its space group is V^. It is said that lepidocrocite, 

unlike goethite, gives magnetic Fe203 on dehydration. 

(a/) The unit cell of CaCr04 • H2O contains eight molecules. Its prob¬ 

able space group is VJ,^ 

Table II. Parameters of the Atoms in Diaspore and Goethite 

Atom For AI2O3 • H2O For Fe^Oi • H2O 

U V u V 

A1 or Fe -0.02 0.11 -0.05 0.103 
0(1) .75 -.04 .75 -.04 
0(2) .22 .29 .25 .29 

(ag) Recent work on plaster of Paris revives the question of whether a 

hemiliydrate, CaS04*pl20, or anhydrous CaS04 provides the proper for¬ 

mula. It has been shown that the water remaining in burnt plaster can 

be nearly all removed without destroying the crystal form and without 

altering the diffraction pattern. From this it has been concluded that the 

water is present in a zeolitic condition—within holes existing in the crystal¬ 

line structure. Assuming that plaster of Paris is built only of CaS04 

molecules, three of them are to be found within the prism of Table 1. 

(ah) The unit cell selected for manganite, Mn203'H20, contains one 

molecule. Except for the fact that the length of the b-axis is halved, this 

cell is practically the same in size and shape as those of diaspore and 
goethite. 

(ai) Stibiconite, Sb204-H20, gives a powder pattern identical with 

that of the anhydrous tetroxide Sb204. It is therefore not surprising that 
no change of pattern occurs on dehydration. 

(aj) The unit prism of CrCtO^-ZHzO contains eight molecules; its 
space group is described as 

(ak) G3rpsum, CaS04 *21120, and brushite, CaHP04 *21120, are said to 

have indistinguishable X-ray patterns and hence to possess unit cells of 

the same size and shape. It is reported that ardealite is a 1:1 double salt 
of these compounds with practically the same cell. 
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In a very recent study it is concluded that the correct space group of 
gypsum is Cjh and not C4 upon which the structure described in (d) 

(book, p. 314) was based. 

{al) Four molecules are found within the monoclinic units assigned to 
Cd(C102)2'2H20 and Zn(C102)2-2H20. 

{am) Previous studies of crystals isomorphous with (NH4)2CuCl4 • 2H2O 
gave two different atomic arrangements. A reinvestigation, based on 
quantitative intensity data and Fourier plots of electron distributions, 
leads to a structure that differs from the first one described under (c) 
(book, p. 314) only in making equal the parameters u and v for the chlorine 
atoms in (f) and (g) [u=v= 0.220] and in reducing the water parameters 
in (e) to w=0.25. This arrangement for K2CuCl4*2H20 gives definitely 
better agreement with quantitative data than does the second one having 
chlorine atoms in (j). It is interesting that no choice between these ar¬ 
rangements could be made from the (NH4)2CuCl4-21120 reflections. 

(an) The monoclinic unit found for NaBr-21120 contains four mol¬ 
ecules; its space group is C^h- 

(oo) The compound Nal-21120 is described as triclinic with a two- 
molecule unit and with Ci as space group. 

(ap) The a-diamminoplatinic chloride is reported to be tetragonal with 
a two-molecule unit; its space group has been given as DJJ. 

The /3-form, of a lower symmetry, is said to have a four-molecule 
orthorhombic unit. 

{aq) Making use of photographic data and some spectrornetric meas¬ 
urements a pronouncedly layer-like structure has been assigned to gibbsite 
(hydrargillite), AI2O3-3H2O. Atoms of the 8 A1(0H)3 molecules within 
the large monoclinic unit that has been used are in general positions of 
Cjh: (e) ±(xyz); ±(^-x, y+f, z). The chosen atomic parameters are 
stated in Table III. 

Tabie III. Parameters of the Atoms in Gibbsite, AkOs -3H2O 

Atom X y z 

AI(l) 0.177 0.520 -0.005 
Al(2) .333 .020 -.005 
0(1) .182 .202 -.110 
0(2) .682 .672 -.110 
0(3) .515 .132 -.110 
0(4) -.015 .632 -.110 
0(5) .298 .702 -.100 
0(6) .838 .172 -.100 

(ar) The tetragonal unit of Ag2S04-4NH3 contains two molecules. Its 
atoms are in the following special and general positions of Vj: 
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S: (a) 000; Ag: (d) O^u; |0u; i, 0, J-u; 0, u-fj with u=0.50 

0: (e) xyz;yxz;xyz;yxz;^-x,y+J,5-z;i-“y.^’-x,z+|;x+U~y,i-z; 

y-hh x+§, z+l with x=0.14, y=0.07, z=0.15 
NH4: (e) x'y'z'; etc. with x'==0.10, y'=0.30, z'=0.50. 

As Figure 314 shows, this arrangement is a packing of SO4 tetrahedra 
and linear NHs-Ag-NHa groups. 

FiG. 314a.—(left) The structure of Ag2S04-4NH3 projected on one of the a-faces of 
its tetragonal unit. The largest circles are NHs groups, the smallest are S atoms; 
Ag atoms are shown as thick rings. 

Fig. 314.h.—(right) A packing drawing of a. The small Ag atoms and the large NHa 
groups are line-shaded. 

(as) The monoclinic units assigned to BaNi(CN)4*4H20 and to the 
isomorphous BaPt(CN)4’41120 contain four molecules. The space group 
is given as Cji with Pt (or Ni) atoms at 000; 00|; |§0; and Ba atoms 
at Ofl; Off; IH; HI- Other atomic positions have not been fixed. 

(at) Two determinations of the structure of BeS04-41120 have been 
made from photographic data. The first (1931, 401), based on DiJ, is 
undoubtedly wrong. The other places atoms in the following positions of 
Vd (written not as the face-centered grouping of 1930, 352, p. 77 but in 
terms of a diagonal body-centered unit): 

S: (c) |00; 0^0; §0^; OM Be: (b) OOJ; 00|; Hf 
0: (i) xyz; yxz; xyz; yxz; x-f^, |-y, z; y-|-|, |-x, z; 

i~y) x-|-2) 2; X, y-t-§, z and 8 similar points about 

For the sulfate oxygen atoms x=0.40, y=0.13, z=0.08. The water mol¬ 
ecules, likewise in (i), are given the parameters x'=0.10, y'=0.14, z'=0.16. 

In this arrangement the beryllium atoms, which of course cannot be 
located with certainty by the X-ray data, have been placed at the centers 
of the groups of water molecules. The structure as a whole thus is a 
packing together of SO4 and Be(H20)4 tetrahedra (Figure 315). 

(a«) The orthorhombic cell which has been given to [Coa?H.)JC104 

contains foxir molecules. Its space group is said to be 
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Fig. 315a.—(left) The atomic arrangement in tetragonal BeS04-41120 proje^ctod on its 
c-face. Be atoms are shown as thick rings, S atoms as the smallest circles. The 
H2O molecules are thickened large circles. 

Fig. 3156.—(right) A packing drawing of a. Oxygens of the SO4 tetrahedra are line- 
shaded; Be atoms show within their water tetrahedra. 

{av) The orthorhombic unit of l,6[Co(Nm)4]Cl is reported to contain 

16 molecules. 

(aw) The unit found for Na2B407-41120 possesses four molecules; its 

space group is thought to be Cjh. 
(ax) The two studies that have been made of Magnus’ green salt, 

[Pt(NH3)4]PtCl4, do not agree in the height of its one-molecule tetragonal 
unit. The following atomic positions, suggested in 1932, 119, are not 

adequately established by the published data: 

Pt: 000; 00| Cl: ±(uvO); =fc(vuO) with u=0.18, v==0.32 
NHs: dr(u'v'J); ±(v'u'^) with u'=0.40, v'=0.11. 

In 1931, 193 it is said that Magnus’ red salt has not only the same 

composition as the green salt but a cell of similar size and shape (ao = 6.293 

A, %=5.25 A). Another determination (1932, 119) concludes that it is 
orthorhombic with ao=7.9 A, bo=8.2 A, c^, = 7.9 A. 

(ay) The unit cube of Zn (€104)2 •4NH3 is said to contain four mol¬ 

ecules. It would be interesting to establish, by further chemical analyses, 

that this salt is really a tetrammoniate and not a hexammoniate. 

(az) A recent study of CUSO4 *51120, based on photographic data and 

a Fourier analysis of some spectrometric measurements, has led to an ar¬ 

rangement which places the copper atoms in its bimolecular triclinic unit 

in the symmetry centers 000 and |J0. The other atoms are in general 

positions =b (xyz) of C\ with the parameters of Table IV. 

As can be seen from Figure 316 the water molecules are of two kinds. 

Four of them are coordinated with the copper atoms. The fifth, like 

zeolitic water, occupies a hole in the structure, its neighbors being two 
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Table IV. Parameters op the Atoms in CuSOi’SHjO 

Atom 

Cu(l) 
Cu(2) 
S 
0(1) 
0(2) 
0(3) 
0(4) 
HjOd) 
11^0(2) 
H20(3) 

HsO(4) 
H,0(5) 

No. per cell x 

1 0 
1 i 
2 0 
2 0.89 
2 .24 
2 .86 
2 .02 
2 .83 
2 .29 
2 .48 
2 .76 
2 .43 

y z 

0 0 

i 0 

0.28 0.64 

.15 .69 

.31 .82 

.38 .64 

.30 .38 

.08 .16 

.11 .17 

.41 .32 

.42 .01 

.12 .65 

Fig. 316a.—((e/0 A projection of the triclinic CuSOj-SHjO arrangement viewed dwm 
the c-axis (after 1934, 15a). The smallest circles are S atoms, the largest are H2O 
molecules. Non-coordinated H2O molecules are thickened. Atoms of the SO4 10ns 
are connected by light lines. 

Fig. {right) A packing drawing of a. The sulfate oxygens are line-shaded; 
small black S atoms show in two of the SO4 groups. All H2O molecules, whether co¬ 
ordinated with the Cu atoms or not, are dot-shaded. 

water molecules and two sulfate oxygen atoms. Each copper atom is 
surrounded by an octahedron of atoms. Four of these are its coordinated 
water molecules situated approximately at the corners of a square, the 
other two, farther away, are oxygens from different sulfate groups. 

(ba) Three unit cells have been suggested for [Pd(NH3)4]Cl2*H20 and 
its platinum analogue. The small one-molecule and the large four-mol¬ 
ecule prisms are presumably wrong. The most recent study (1934, 71), 
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using Laue and spectral photographic data, places the atoms of the two- 
molecule cells (Table I) in the following special positions of 

Pd: (a) 000; HO H2O: (d) |00; 0|0 
Cl: (h) u, u+h 5; u, I; u+i u, u, ^-u, | with 

u=0.285 
N: (i) uvO; vuO; v+l, u+§, 0; u+§, i-v, 0; uvO; vuO; 

1—V, 1—u, 0; |-“U, v+l, 0 with u=0.194, v=().027. 

Four coordinated NH3 molecules are arranged about a central palladium 
atom at the corners of a square (NH3-Pd=2.02 A). The extent to which 
packing prevails in basal planes of this structure and the way the H2O 
molecules lie in holes present in these planes can best be seen from 

Figure 317. 

Fig. 317a.—(left) The atomic arrangement assigned to tetragonal Pd (N 113)4012-1120 
as projected on its c-face. The largest circles are Cl ions, the smallest are Pd atoms. 
Intermediate circles are NH3 if light in outline, H2O if heavy. 

Fig. 317&.—(right) A packing drawing of a. The 1120 and NHj molecules are not 
distinguished. 

(bb) The rhombohedral unit found for AICI3-61120, and for the iso- 
morphous CrClj-61120, contains two molecules. An atomic arrangement 
of both salts, based on Dg^, has been determined as: 

Al: (b) 000; iM 
Cl: (e) u, t^-u, ^-u, i, u; f, u, |-u; Q, u+f, f; u+|, f, u; f, u, u+§ 

with u=0.51 

0; (f) ±(xyz); ±(zxy); ± (yzx); ±(y+i, x+|, z+|); =fc z+i y+i) ; 
±(2+1, y+l, x+l) with x=0.26, y=0.16, z=—0.04. 

(6c) The two-molecule cells of MgS04-(NH4)2S04-6H20 and of the 
many crystals isomorphous with it have arrangements developed from 
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CJh- A structure deduced from an elaborate consideration of photographic 
data has all atoms except magnesium in the general positions: (e) ±(xyz); 

y, z), with the parameters listed in Table V. Mg atoms are 
at (a) 000; This arrangement can scarcely be correct because while 
the NH4-O and Mg-H20 separations are satisfactory, sulfate oxygens be¬ 
longing to different SO4 groups (such as A and B in Figure 318) are much 
too near together (0-0= ca 2.10 A). 

Table V. Parameters of the Atoms in MgS04* (NH4)jS04-6H20 

Atom X y z 

NH4 0.120 0.357 0.345 
S .090 .635 .260 
0(1) .153 .746 .376 
0(2) -.032 .656 .020 
0(3) .227 .566 .225 
0(4) .012 .571 .419 
H^Od) .108 .127 .094 
H,0(2) .168 -.084 .290 
HjO(3) .123 -.062 -.150 

Fig. 318.—The unit cell of the 
structure proposed for MgS04 • 
(NH4;2S04-6H20 as projected 
on its b-face. The smallest 
circles are S atoms, the largest 
NH4 ions. Circles shghtly 
larger than S are Mg ions. 
Molecules of H2O are distin¬ 
guished from sulfate O atoms 
by being heavily ringed. 

(bd) The monoclinic units of MgBr2-6H20 and MgCl2 -6H20 contain 
two molecules. Photographic data have been used in choosing the fol¬ 
lowing arrangement, based on 

Mg: (a) 000; ^|0 Cl or Br: (i) uOv; uOv; u-bj, v; u, v 

For Cl, u=0.320, v=0.615; for Br, u= 0.318, v=0.615. 

HjOCl): (i) u'Ov'; etc. with u'=0.20, v'=0.11 for both salts 
HsO(2): (j) ±(xyz); ±(xyz); ±(x-f-|, y-|-|, z); db(x-|-§, J-y, z) 

with x=0.96, y=0.20 for both salts, z== 0.230 for the chloride and 0.225 for 
the bromide. 

{be) The four molecules in the elongated tetragonal unit of NiS04’ 
6H2O are arranged according to the demands of the enantiomorphic pair 
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of space groups Dt and Dj. Expressed in terms of Dj the atomic posi¬ 
tions found for this crystal are: 

Ni: (a) uuO; uu|; u-|-|, i-u, f; |-u, ud-|, ^ with u=0.71 
S: (a) u'u'O; etc. with u'=0.21 
HjO and 0: (b) xyz; y-l-5. z+l; x, y, z+i; J-y, x+^, z+l; 

§-x, y-i-l, l-z; y, x, |-z; x-bi ^-y, f-z; yxz 

with the parameters of Table VI. 

Table VI. Parameters of THE Oxygen Atoms IN NiS04‘6IL0 

Atom X y z 

0(1) 0.12 0.12 0.06S 
0(2) .43 .17 .000 
HaOd) .67 .45 .054 
H20(2) .97 .75 .054 
HsOO) .56 .86 .077 

Fig. 319o.—A projection of the tetragonal NiS04-6H20 grouping upon one of its a-faces. 
In this figure the sulfate oxygens are heavily ringed, the H2O molecules lightly out¬ 
lined. Medium sized circles, at the centers of the water octahedra, are the Ni atoms. 

The structure as a whole is a packing of SO4 tetrahedra and (Ni • 6H2O) 
octahedra (Figure 319). 

(bf) In a recent study a set of atomic positions, developed from Cjj, 
has been proposed for SrClj • 6H2O. They are: 
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Sr: (a) 000 Cl: (d) f|u withu=i 
H2O: (g) ±(xyz); ±(y-x, X, z); d=(y, x-y, z) with x=y=0.387, z=0.0. 

The published data, which are scanty, are insufficient to establish this 
structure. 

(bg) The previously chosen unit for MgPt(CN)4-71120 (ao=14.6 A, 
Co = 3.13 A) was too small. The true cell is twice as high, Co = 6.26 A, 
and contains four molecules. 

(bh) The space group of the four-molecule cell of 3CdS04*8H20 is 
said to be Cjh- 

(bi) Estimates of the intensities of powder lines have been used to 
suggest the following atomic arrangement, based on Djh, for Sr02-8H20: 

Sr: (a) 000 O: (h) ^|w; ^iw with w= 0.10 
H2O: (r) d:;(uuv); ±(uuv); db(uuv); ±(uuv) with u=0.20, v=0.25. 

In this arrangement strontium atoms are surrounded by cubes of H2O 
molecules with the somewhat short Sr-H20 distance of 2.26 A; inside the 
O2 group the atomic separation is 1.11 A. 

(bj) The large unit found for 2Na3P04'NaF-I9H2O holds 40 mol¬ 
ecules. The data are those demanded by 0®. 

(bk) The unit cubes of several phosphotungstic and phosphomolybdic 
acids and their salts crystallizing with 30dzl molecules of H2O have been 
found to contain eight molecules. Their space group is said to be O^. 

Powder photographic data have been used to determine the shape and 
size of the PW12O40 anion in the partially dehydrated H3PWi204o-5, or 7, 
H2O and to suggest probable positions for the H2O molecules. The unit 
cube of this lower hydrate contains two molecules; the atoms of its anions 
are in the following special positions of 0^: 

P: (2a) 000; 
W: (24u) uuv; uuv; uuv; uuv; vuu; vuu; vuu; vuu; uvu; uvu; u^u; Uvu; 

i-u, §-u, i-v; i-u, u+§, v+l; u-)-?, §-u, v+i; 
u+i, u+§, ^-v; §-v, §-v, §-u; v+i |-u, u+i; 
v+§, u+l, |-u; f-v, u+i, u+§; |-u, §-v, i-u; 

v+§, §-u; ^-u, v+i, u+§; u+§, i-v, u+i 

with u=0.205, v=0.006 

0(1): (8d) u'uV; Q'u'Q'; u', J-u'; u'+i, i-u', u'+J; 
u'u'u'; u'Q'u'; |-u', u'+J, u'+J; u'+J, u'+i, J-u' 

with u=0.081 

0(2): (24u) UiUiVi; etc. with Ui=—0.080, vi=—0.234 
0(3): (24u) UjUsVj; etc. with Uj= 0.123, v»= 0.292 
0(4): (24u) ujUjVj; etc. with Us=—0.312, v«*—0.008. 
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The shape of one of these PW12O40 ions is shown in Figure 320. It 
consists of a central PO4 tetrahedron and 12 surrounding WOe octahedra 
that share oxygen atoms with it. The HjO molecules are considered to 
be of two sorts; three in the positions: (6e) 00§; ^00; OlO; 55O; IO3; O5J 
and four at (4e) Iff; fH; HI: HI, if the crystal is a heptahydrate. 

Fig. 320.—The PW12O40 ion is consid¬ 
ered to have a shape suggested by 
this diagram. The central P atom 
is surrounded by four O atoms at the 
corners of the dotted tetrahedron. 
About it are 12 oxygen octahedra 
which share atoms with one another 
and with the PO4 group and which 
have W atoms at their centers (after 
1934, 131). 

Q>1) The unit assigned to the complex phosphate wavellite, 4(P04)A1- 
2A1(0H)3 -9H20, is bimolecular. 

(Jm) The unit cell of legrandite has one molecule of the composition 
Zni4(As04)90H • 12H2O. 

(6n) The monoclinic unit given to [CofNH3)4]2S04-31120 contains two 
molecules; the space group is thought to be Cj. 

Q)o) Two molecules are found in the unit of MgNH4As04-6H20; its 
space group is Cay 

(Jbp) The structure recently developed for LiC104'3H20 differs from 
that previously found for the isomorphous Lil-31120 (/) in the positions 
of the lithium atoms. In the perchlorate, atoms are in the following 
special positions of 

Li: (a) OOui; 0, 0, Ui+^ with Ui=0.25 

Cl: (b) Hu'; I, 3^ u'+^ with u'=-0 

0(1): (b) ifw; w+| with w=0.278 
0(2): (c) uuv; 2u, u, v; u, 2u, v; u, u, v+^; 2u, u, v+^i u, 2u, v+| 

with u=0.439, v=-0.092 

H2O: (c) U2U2V2; etc. with U2= 0.125, V2=0.50. 

This arrangement, which coordinates six H2O molecules about each lithium 
atom (Figure 321), is practically identical with one found from quantita¬ 
tive speotrometric data.* 

* Unpublished measurements of R. B. Corey in this laboratory. The parameters 
derived from this study are Ui(Li) =0.25, u'(Cl)»0, w(0) =0.265, u(0) =0.435, v(0) = 
-0.09, u*(HaO)-0.125, VaCH^O)-0.50. 
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It is probable that the lithium atoms in Lil-SHjO should be in (a) 
OOui; 0, 0, Ui+f instead of the earlier (b) Hui," f, h Ui+i. Photographic 
data lead to the parameters: Ui(Li)=0.25, u'(I)=0, U2(H20)=0.142, Vr 
(H20)=0.50. 

Fig. 321a.—(left) A basal projection of the structure found for LiC104-31120. Li 
atoms are at the corners of the diagram surrounded by the heavily outlined water 
molecules. 

Fig. 321?;.—(right) A packing drawing of a showing the tetrahedral CIO* ions and 
(black) Li ions equidistant from six H2O molecules. The O atoms and H2O mol¬ 
ecules, of equal size, are not distinguished by different shadings. 

Fia. 321c.—(leU) A projection upon its b-face of the monoclinic structure deduced 
for Li2S04-H20. Atoms of the SO4 ions are connected by light lines; the H2O mol¬ 
ecules are heavily ringed. 

Fig. Z2\d.—^{right) A packing drawing of c with the H2O molecules distinguished by 
line-shading. The S atoms within their tetrahedra cannot be seen. 

(bq) The hexagonal unit prism of Ba(C104)2 -31120 is bimolecular. The 
space group is reported to be Cj or CJi,. 

(6r) The atoms of the two Li2S04-H20 molecules contained within 
the unit cell are in general positions of C\ with the coordinates (a) xyz; 

y+h 2. Parameters, determined from photographic data, are those of 
Table VII. In this structure (Figure 321c and d) the lithium atoms are 
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Table VII. Parameteks of the Atoms in Li2S04 H20 

Atom X 

S 0.208 

0(1) .153 

0(2) .500 

0(3) .078 

0(4) .161 

H2O .569 

Li(l) -.069 

Li(2) .167 

y z 

0.000 -0.211 

-.139 -.083 

-.014 -.192 

-.078 -.397 

.305 -.197 

.472 -.386 

.542 -.386 

.478 .003 

surrounded by tetrahedra consisting of three sulfate oxygen atoms and 
one HoO molecule. 

(bs) The unit prism of Na2C03-H20 contains four molecules; its space 
group is said to be Vh®. 

(bt) Four molecules are within the cell of AgN03-2NH3. The space 
group is CJv. 

Miscellaneous Inorganic Compounds 

(ca) The cube lengths found for a large number of atopites and atopite- 
like minerals, and for ochers of calcium and of lead vary between ca 10.25 
A and ca 10.43 A. 

(cb) A partial atomic arrangement for azurite, 2CuC03 Cu(0H)2, has 
been based on some rotation photographs and spectrometer data. Copper 
atoms have been placed in (a) 000; 0|-| and in general positions of Cjh* 
(e) zh(xyz); ±:(x, y+|, z) with x==0.25, y=0.486, z=0.083. Suggested 
parameters for the other atoms are not proved by the existing data. 

(cc) The mineral hambergite, Be2B03(0H), has been given a structure 
which explains both a series of spectrometric intensities and the qualita- 

Fig. 322a.—(left) A projection upon the c-face of the orthorhombic structure assigned 
to hambergite, Be2B03(0H). Atoms of the BOa groups are connected by light lines. 
Intermediate circles represent Be atoms; the (OH) groups are heavily ringed. 

Fig. 3226.—(right) A packing drawing of a. Small spheres are the Be atoms; the B 
atoms do not show. Hydroxyl groups are line-shaded. 
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tive data from oscillation photographs. Atoms in its eight-molecule unit 
are in general positions (c) ±(xyz); y, z); ±(x, y+i, z); 
=t(3~x, y, 2-|-§) of Vi® with the coordinates listed in Table IX. The 
axes of this description are the same as those of 1930, 352, p. 64. 

As can be seen from Figure 322a and b the grouping consists of linked 
BO3 triangles and Be(030H) tetrahedra. Each oxygen atom is shared by 
one B and two Be atoms; OH groups join two Be atoms. 

Table IX. Parameters op the Atoms in Hamberqite 

Atom No, per cell X y z 

Bed) 8 -0.031 0.183 0.458 
Be(2) 8 .236 .069 .458 
B 8 .117 .103 -.028 
od) 8 .031 .183 -.167 
0(2) 8 .097 .103 .278 
0(3) 8 .194 .037 -.167 
OH 8 -.167 .183 .167 

(cd) The copper atoms of the four molecules of CuCOj • Cu(OH)2 Isdng 
in the unit cell of malachite are reported to be in two sets of general 
positions of Cst,: (e) ±(xyz); ±(|-x, y+|, z) with the parameters x=0, 
y=0.208, z=0.125, x'=0.264, y'=0.104, z'=0.625. The other atomic 
parameters have not been found. 

(ce) Some photographic data have been used in assigning a structure 
to northupite, Na2Mg(C03)2-NaCl. According to this arrangement the 
16 molecules of its unit cube are in the following special and general 
positions of T^ (1930, 352, p. 125): 

Mg: (16c) III; |H; |||; H| and 3 sets of similar points about 0||, 
and 

Cl: (16b) III; |||; |||; ||| and 3 sets of similar points about 0||, |0| 
and ||0 

C: (32b) uuu; uuu; uuu; uuu; J—u, |—u, |—u; |—u, u+|, u-|-|; 
u-|-|, |—u, u-hi; u-|-|, u-hl, I—u and similar points about 0||, 
|0| and ||0 with u(C)=0.405 

Na: (48c) uOO; QOO; OuO; OuO; OOu; OOQ; 
i“U, I, I; u+i, I, I; I, I—u, 1; J, u-l-J, J; |, J, J—u; I, J, u-|-J 

and similar points about 0||, |0|, ||0 with u(Na)=0.225 
O: (g) xyz; xy2; xyZ; xyz; zxy; 2xy; zxy; zxy; yzx; ySx; yzx; yzX ; 

i-x, i-y, i-z; |-x, y+|, z-t-i; x-|-J, j-y, z-Hi; 
x+i, y-bl, i-z; i-z, i-x, i-y; z-|-i, i-x, y+i; 
z+i, x-bi, i-y; i-z, x-bi, y-bi; i-y, i-z, i-x; 
y+i, z-bi, i-x; i-y, z-bi, x-bi; y+i, i-z, x-bi and similar 

points about 0||, |0|, |J0. The chosen parameters are x=0.392, y=0.348, 
z=0.475. 
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The arrangement given to tychite, Na4Mg2(C03)4‘Na2S04, is like this 
northupite grouping with Na2S04 in place of 2NaCl. The eight sulfur 

atoms in the unit cube are at (8f) 000; ^0; |0|; OH; Hi; iff; IH; ilh 
Sulfate oxygen atoms are in (32b) u'u'u'; etc. with u'(0) = 0.062. The 

other atoms are placed as in northupite: Mg in (16c); C in (32b) with 

u=0.400; Na in (48c) with u=0.225 and carbonate oxygens in (g) of T^ 
with x= 0.375, y= 0.352, z-0.473. 

(c/) From spectral photographic data it has been found that the atoms 
in potassium trithionate, K2S3O6, are in the following positions of Vjf: 

(c) rir(uv4), ±(i u, v+f, f) (d) dr(xyz); rb(x-i-i, i•~y? i“z); 

±(x, y, i-z); ±(x4-2-, z) 

with the parameters of Table X. In this structure (Figure 322c) S-0 

within the same ion is ca 1.50 A, S-S=2.19 A and the angle joining the 
three sulfur atoms is 103°. 

Table X. Parameters op the Atoms in K^SsO, 

Atom No, per cell Position 

K(l) 4 (c) 
K(2) 4 (C) 

S(l) 4 (c) 
S(2) 4 (C) 

S(3) 4 (C) 

0(1) 4 (C) 

0(2) 4 (c) 
0(3) 8 (d) 
0(4) 8 (d) 

X y z 

0.131 0.089 0.25 
.180 -.236 .25 
.033 .319 .25 
.083 .472 .25 
.305 .472 .25 

-.125 .305 .25 
.347 .583 .25 
,083 .278 .042 
.361 .417 .042 

Fig 322c.~-(^«/^) The structure found for K2S,06 projected on the a-face of its ortho- 
rhomhc cell. Largest circles are 0 atoms, intermediate circles K ions Atoms of 
the S3O6 ions are connected by light hnes. 

Fiq. S22d.---(tyht) A pacing drawing of c. The K ions are line-shaded. 
nincance is to be attached to the radii chosen for sulfur. No sig- 
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(eg) Estimated intensities on oscillation photographs have been used 
in choosing a structure for potassium pyrosulfite, K2S2O5. The atoms in 
its two-molecule cell are placed in the following special and general posi¬ 
tions of Cl^: (e) db(u|v), (f) db(xyz); zb(x, y, z) with the parameters of 
Table XL The pyrosulfite ion resulting from this arrangement has the 
structure O3S-SO2 (Figure 323) with a S-S distance of 2.18 A. 

(ch) It is natural to infer from the fractional number of molecules 
found in the unit of pyroaurite that either the formula, the cell size or 

Table XL Parameters of the Atoms in 

Atom No. per cell Position 

K(l) 2 (e) 
K(2) 2 (e) 
S(l) 2 (e) 
S(2) 2 (e) 
0(1) 4 (f) 
0(2) 4 (f) 
0(3) 2 (e) 

X y z 

0.22 0.25 0.95 
.65 .25 .67 
.70 .25 .22 
.01 .25 .32 
.07 .06 .24 
.63 .06 .31 
.67 .25 .03 

Fig. 323a.—(left) The monoclinic structure of K2S2O6 projected on its b-face. Oxygen 
atoms are represented by the largest, S by the smallest circles. The light lines join¬ 
ing them outline the SoOs ions. 

Fig. 3236.—(right) A packing drawing of a. The size given the S atoms was deter¬ 
mined by convenience only. K ions are line-shaded. 

the density is in error. Existing data contain no evidence for a larger 
cell and the formula is said to be substantially correct. 

(d) A large number of the cubic or pseudo-cubic voltaites have been 
prepared and their unit cells measured (see Table XII). The composition 
of these sulfates is still uncertain though a recent study (1932, 171) places 
it as approximately (S04)i2Fe4‘^‘^”^R6"^‘^Ri^-16-18H20. 

(cj) A structure has been found for the complex sulfide binnite, (Cu, 
Fe)i2As4Si3, which, except for the addition of two extra sulfur atoms and 
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Table XII. Unit Cube Size of Voltaites 

Voltaite Oo Voltaite 

K-Cd compound 27.54 Rb-Cd compound 27.80 

K-Fe++ 27.33 Rb-Fe++ 27.60 

K-Mn++ 27.25 Rb-Mn++ 27.60 

K-Zn 27.10 Rb-Zn 27.15 

NH4-Cd 27.85 Tl-Cd 27.69 

NH4-Fe++ 27.35 Tl-Fe++ 27.43 

NH4-Mg 27.42 Tl-Mn++ 27.71 

NH4-Mn++ 27.55 Tl-Zn 27.01 

Fig. 324a.—(left) A cube face projection of the structure of biimite, (Cu, Fe)i2As4Sii. 
The largest circles are (Cu, Fe), the smallest are S atoms. 

Fig. 3246.—(right) A packing drawing showing the bottom half of the unit cube of 
binnite. The atoms have their neutral radii; As atoms are line-shaded. 

somewhat altered parameters, is identical with that previously deter¬ 
mined for tetrahedrite, (Cu, Ag)s(Sb, As)S3 [XV, (p), p. 280]. The bin- 
nite arrangement, as developed from photographic data, places the atoms 
of its two-molecule cube in positions (of Tj): 

Cu, Fe(l): (12a) uOO; etc. with u= 0.225 
Cu, Fe(2): (12h) i0i;etc. 
As: (8a) u'u'u'; etc. with u'=0.255 
S(l): (24g) vvw; etc. with v=0.122, w=0.363 
S(2): (2a) 000; Hi 

The packing is that to be expected from neutral atoms. It is instructive 
to compare the atomic environments in this arrangement (Figure 324a 
and b) with those prevailing in enargite, Cu8AsS4 [XVIA, (an)]. All the 
sulfurs in enargite and those [in (24g)] which are common to both binnite 
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and tetrahedrite have four metal atoms tetrahedrally placed about them. 
The two binnite sulfurs at 000 and are enclosed by six octahedrally 

grouped (Cu, Fe) atoms. In enargite the copper and arsenic atoms are 

tetrahedrally surrounded but in binnite and tetrahedrite the metal en¬ 

vironments are more complex. Arsenic atoms and the Cu, Fe(l) atoms 

in (12a) have only three neighboring sulfurs; four sulfurs, however, are 

to be found about Cu, Fe(2) in (I2h). 
(cfc) The mineral boracite, with eight molecules of the composition 

MgeCUBuOje in its orthorhombic unit, has recently been assigned one of 

the space groups Cjv or C^t. Previous studies had preferred Cjy. 
Above 265° C this mineral is cubic with a four-molecule cell. Possible 

space groups and structures have been discussed but no definite conclu¬ 
sions have been reached. 

{cl) It has been shown that the photographically observed powder lines 

of sulphohalite, 2Na2S04 NaCl NaF, can be explained in terms of the 

following arrangement based on 0^ (Figure 324c): 

F: (4b) 000; HO; OM Cl: (4c) HI; 00|; 0^0; iOO 

S: (8e) 
Na: (24a) u'OO; etc. (see book, p. 303) with u'=0.226 

0: (32a) ± (uuu); ± (uuu); ± (uuu); ± (uuu) and 3 sets of similar 

points about 0H> 2O5 and HO (1930, 352, p. 110) with 
u=0.]64. 

Fiq. 324c.—A cube face projection of one eighth 
of the unit of sulphohalite, 2Na2S04*NaCl* 
NaF. The circles have the radii of their cor¬ 
responding atoms; in order of decreasing size 
they refer to Cl" 0, F" and Na'^. 

(cm) The sulfide mineral tetradymite, 612X628, has an elongated rhom- 

bohedral unit containing one molecule. From photographic data it has 

been found that atoms are in the foUowing positions: 

S: 000 Bi: ± (uuu) with u=0.392 Te: ±(vvv) with v=0.788. 

This 3delds a structure which is a succession of layers of atoms of a kind 
normal to the three-fold axis. The shortest interatomic distances are: 
Bi-S=3.05 A, Bi-Te=3.12 A, Te-Te=3.69 A. 



Chapter XIXA. Structures of the Silicates 

Some of the work of the last three years has been devoted to simple 

silicates not yet analyzed, some to a revision of previous studies, but for 

the most part it has been concerned with more complex mineral types 

whose structures are still imperfectly understood. Most of these are 

either sheet structures, like the micas, or network groupings, such as the 

sodalite minerals and the zeolites. The zeolites are of especial interest 

because of the way they can be dehydrated and can reabsorb water with¬ 

out destruction of their atomic frameworks; approximate arrangements 

have been deduced for several which aid in understanding how this can 

occur. Real progress is also being made towards unraveling the crystal 

structures of the feldspars, one of the few important groups of the silicate 

minerals for which reasonable atomic arrangements have not been pro¬ 
posed. 

A, L Simple Orthosilicates 

(afc) A reinvestigation of the structure of andalusite, Al2Si05, has led 

to slightly changed parameters in the X direction for the atoms 0(3), 

0(4) and Al(2) (see Table IX, book, p. 333). The new arrangement, with 

x(0, 3)=0.11, x(0, 4)=0.25, x(Al, 2)==-0.125, agrees with the earlier one 

in giving aluminum atoms an oxygen coordination of five. 

(al) A considerably altered grouping has been proposed for sillimanite, 

Al2SiOs. This structure yielding good agreement with the lines observed 

on a powder photograph differs from the previous one in having regular 

Si04 tetrahedra. Atoms are in the same special positions of as before 

(book, pp. 331 and 293) with the new parameters listed in Table II. 

(am) A structure has been assigned to the high temperature cubic form 

of camegieite, NaAlSiO^, which, if its silicate and aluminate tetrahedra 

are considered equivalent, is closely related to that of high cristobalite. 

This arrangement gives calculated intensities agreeing with a powder 

photograph made at ca 760*^ C. The atoms in its four-molecule cube are 
in the following positions of T^ (book, p. 267) : 
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Fig. 325.—A cube face projection of 
the unit of the structure given to 
the high temperature (a) modifica¬ 
tion of carnegieite, NaAlSi04. In 
order of decreasing size the circles 
refer to O, Na, A1 and Si atoms. 

Fig. 326a.—A cube face projection of 
the atomic arrangement found for 
Na2CaSi04. Oxygen atoms are 
shown as the largest circles, Na by 
slightly smaller ones. Light lines 
connecting smallest Si with 0 atoms 
outline Si04 tetrahedra. 

Fig. 3265.—A packing drawing of a. 
Si atoms cannot be seen; the Ca ions 
are line-shaded. 
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Table IL Parameters of the Atoms in Sillimanite 

Atom No. per cell Position X y z 

0(1) 4 (e) 0.15 0.07 0.25 
0(2) 4 (c) -.15 -.07 .25 
0(3) 4 (c) .03 .47 .25 
0(4) 8 (d) -.11 .22 0 
Si 4 (c) .14 -.35 .25 
Al(l) 4 (a) 0 0 0 
Al(2) 4 (0 -.14 .35 .25 

Al: (4f) uuu; etc. with u=0.258 Si: (4f) with u= 0 

Na: (4f) with u= 0.744 0(1): (4f) with u= 0.125 
0(2): xyz; etc. with x=0.658, y=0,644, z=0.055. 

It will be noticed that this structure (Figure 325) would more closely 
resemble that of Na2CaSi04 (an) if the Si and A1 positions were inter¬ 
changed ; such an alternative grouping w^ould give indistinguishable X-ray 
effects. 

(an) A further study of the cubic Na2CaSi04 has led to a structure 
that accounts well for powder photographic data and resembles /3-cristo- 
balite and a-carnegieite (aw). It differs from the previously suggested 
arrangement (book, p. 338) in an interchange of calcium and half the 
sodium atoms and in the parameters for oxygen lying in general positions. 
Its atoms (Figure 326) are in the following special positions of T> (book, 
P.2G7): 

Si: (4f) uuu; with u= 0.258 Ca: (4f) with u=—0.007 
Na(l): (4f) with u= 0.750 Na(2): (4f) with u=0.500 
0(1): (4f) with u=0.134 0(2): xyz; etc. with x=0.555, y==0.667, 

z=0.222. 

(ao) The structure proposed for the cubic mineral euljrtite yields dis¬ 
crete Si04 tetrahedra. Its space group is Tj with bismuth atoms in 
positions: 

(16f) uuu; u, u, ^-u; |-u, u, u; u, ^~u, u; 
u+i u+i, u+L* i~u, n+h i-u; u+i, f-u, J~u; f~u, i-u, u+i 

and 8 similar points about with u= 0.083. 

If the other atoms are arranged as follows, a reasonable grouping is ob¬ 
tained that does not conflict with the powder data: 

Si: (12k) m; m; iih UO; oil; o||; ef; IH; ilO; iU; Hi; HI 
O: xyz; etc. (1930, 352, p. 131) with the parameters x~’-0.035, 

y=0.125, z*0.284. Other values, x=0.055, y==0.11, z~0.284, which can¬ 
not be excluded, are thought improbable. 
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(ap) A structure has been proposed for euclase, HBeAlSiOs, which 
explains spectrometric measurements of the first twelve orders of reflec¬ 
tion from the (010) face. This arrangement based on C'h, instead of the 
previously chosen CL, has all its atoms in general positions: (e) db(xyz); 

2—y, z-ff) with the parameters of Table III. It is considered that 
the y parameters are essentially correct but that those along X and Z 
are only approximate. 

TABI.E III. Parameters Chosen for the Atoms op Euclase 

Atom No. per cell X y z 

Be 4 0.50 -0.20 0.02 

Al 4 .03 -.06 .25 
Si 4 .47 .10 .15 
0(1) 4 .22 .05 .39 
0(2) 4 .26 -.03 -.17 
0(3) 4 .64 .19 .37 
0(4) 4 -.28 -.15 .11 

OH 4 .22 -.17 .31 

(ag) A series of spectrometric measurements have been used to give 
the mineral vesuvianite a grouping with four CaioAl4(Mg, Fe)2Si9034(0H)4 
molecules in its tetragonal unit. This arrangement, which somewhat re¬ 
sembles that found for the cubic garnets, has atoms in the following gen¬ 
eral and special positions of DJh: 

8(Mg, Fe): (f) 000; §00; 0§0; 00§; §§0; 0§§; §0§; §§§ 

4 Si(l): (d) iiO; ffO; -H§; IH 4 Ca(l): (c) HI; HH HI 
4 Ca(4): (e) Ifv; i, f, §—v; |jv; f, §, v-h§ with v=0.13 
8 0(9): (h) uu|; u, u-t-§, §; §-u, u-t-§, i; §-u, u, § 

uuf; u, §-u, f; u-|-§, §-u, f; u-fj, u, | with u=0.16. 

The remaining atoms are in the following general positions with parameters 
as listed in Table IV: 

(k) ±(xyz); ±(y, x-|-§, z); ±(§-x, §-y, z); ±(y-t-§, x, z); 

±(y+§, x-|-§, §-z); ±(x, §-y, §-z); ±(y, x, §-z); ±(§-x, y, §-z). 

The coordinates used in this description are derived from those of 1930, 
352, p. 91 by transferring the origin to such a point as (-f, -§, J). 

It is uncertain how closely this structure describes the atomic arrange¬ 
ment that prevails in vesuvianite crystals. The chosen chemical formula 
differs from that previously given to the mineral and subsequent studies 
of the available chemical analyses are said to favor formulas departing 
appreciably from CaioAl4 (Mg, Fe)2Si»034(0H)4. One of these (1932, 
294) is Xi»YisSii«(0, OH, F)8« where X=Ca(Na, etc.) and Y=(A1, Fe, 
Mg, etc.); another (1933, 461) is Ca«Al4(Si, Al)# (Fe, Mg, etc.)4(0, 
OH, r)„. 
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Table IV. Parameters for Atoms of Vesuvianite Lying 

Positions 

IN General 

Atom No. per cell X y z 

Si(2) 16 0.19 0.05 0.87 
Si(3) 16 .09 -.17 .37 
Ca(2) 16 .19 .05 .36 
Ca(3) 16 .09 -.17 .88 

A1 16 .11 .11 .13 
0(1) 16 .22 .17 .08 
0(2) 16 .13 .16 .28 
0(3) 16 .06 .22 .08 
0(4) 16 .07 .13 .48 
0(5) 16 .17 .01 .18 
0(6) 16 .01 .06 .17 
0(7) 16 -.05 .18 .32 
0(8) 16 .10 -.08 .07 
OH 16 .13 -.25 .06 

A, II. Complex Silicate Groups 

(ar) The structure found for hemimorphite, H2Zn2Si05, indicates that 

it is a pyrosilicate with a formula best written as Zn4(0H)2Si207-H20. 

Atoms are in the following positions of 

2 0(1): (a) OOu; u+J with u=0 

2 H2O: (b) -^Ou; 0, u+l with u=—0.150 

4 OH: (c) uOv; uOv; u+|, v+|; u, v+| with u=0.75, v=0.350 

4 0(3): (d) Ouv; Otiv; u+|, v+|; u, v+J with u=0.187, v=0.305 

4 Si: (d) Ou'v'; etc. with u'=0.160, v'=0 

8 Zn: (e) xyz; xyz; xyz; xyz, and four similar points about \\\ (1930, 

352, p. 56) with x= 0.300, y= 0.342, z=0.010. 

8 0(2): (e) x'y'z'; etc. with x'=0,161, y'=0.187, z'=0.850. 

In this arrangement a zinc atom is surrounded by three oxygen atoms and 

one OH group (Figure 327); the water molecules, bounded by OH groups 

and oxygen atoms lie loosely in big holes that exist in the structure (min¬ 
imum H2O to OH or 0=ca 3.3 A). 

(as) An arrangement has been described for the mineral bertrandite, 

Be2(BeOH)281038104, using spectrometric and photographic data. Based 
on a hexagonal close packing of oxygen atoms it is said to be intermediate 
between a silicate chain structure and one having discrete silicate groups. 
Half the silicon atoms are centers of isolated Si04 tetrahedra; the other 

half form parts of tetrahedra which are linked together in endless SiOs 

chains such as those of diopside. Atoms are placed in special and general 
positions of CJ®: 
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Fig. 327a.—(left) The structure assigned to hemimorphite, H2Zn2Si06, as projected 
upon the c-face of its orthorhombic unit. The largest circles represent 0 atoms, 
H2O groups and (OH) radicals. The silicate O atoms are joined by light lines with 
Si (the smallest circles) to form 8120? groups; the heavily ringed circles are (OH). 

Fig. 3276.—(right) A packing drawing of a. The (OH) radicals are line-shaded; the 
Si atoms cannot be seen. 

Fig. 328.—The structure proposed for 
bertrandite, Be2(Be0H)2Si207, as 
projected on the c-face of its ortho¬ 
rhombic unit. The smallest circles 
are Si, the largest are 0 atoms [or 
(OH) if heavily ringed]. 

Table V. Parameters of the Atoms in Bertrandite 

Atom No. per cell Position 

Bed) 8 (b) 
Be(2) 8 (b) 
Sid) 4 (a) 
Si(2) 4 (a) 
OH 8 (b) 
od) 4 (a) 
0(2) 4 (a) 
0(3) 4 (a) 
0(4) 8 (b) 
0(5) 8 (b) 

X y z 

0.216 0.155 0.376 

.435 .166 .625 

.074 0 ,625 

.360 0 .626 

.215 .166 0 

.065 0 0 

.283 0 .60 

.360 0 0 

.096 .165 .60 

.435 .165 .50 
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(a) uOv; Q, 0, v+|; u+^, v; |-u, i v+§ 
(b) xyz; x, y, z+ j; xyz; x, y, z+i and four similar points about HO. 

The atomic parameters are reproduced in Table V. 
As can be seen from Figure 328 this grouping yields several improbable 

interatomic distances. Atoms Be(2) and 0(5) are only 0.57 A apart. 
Both kinds of silicate groups are distorted. Thus Si(2)-0(2) is 1,30 A 
while the distance from Si(l) to one of its four surrounding oxygen atoms 
is 2.18 A. 

B. Silicate Chain Structures 

(at) The structure found for acmite, NaFe(Si03)2, is identical with 
that of diopside (r) both in cell dimensions and in atomic parameters, 
with sodium in place of calcium and ferric iron replacing magnesium. 

Spodumene, LiAl(Si03)2, has the same arrangement but in a cell of 
appreciably different size and shape. The atomic parameters, with lithium 
and aluminum in place of calcium and magnesium, have been given ap¬ 
proximate values close to those for diopside (see Table VI). 

Taule VI. Parameters op the Atoms in Spodumene 

Atom No. per cell Position X y z 

Li 4 (e) 0 -0.31 0.25 
A1 4 (e) 0 .09 .25 
Si 8 (f) 0.21 .41 .25 
0(1) 8 (f) .39 .41 .14 
0(2) 8 (f) .13 .25 .32 
0(3) 8 (f) .14 .49 0 

(au) Photographic spectral data have been used to assign to a bronzite, 
(Fe, Mg)Si03, parameters that agree well with those previously found 
for enstatite (book, p. 344). 

(av) A structure for epididymite, HNaBeS^Os, has been deduced from 
spectrometric measurements. It places atoms in special and general posi¬ 
tions of Vh with the parameters listed in Table VII: 

(a) 000; 00f^O; (b) OJO; OJ^-; lOO; J0| 
(c) zt(uvi); d=(u+i, i-v, i) (d) =fc(xyz); =b(x+J, i~y, i-z); 

=t(x, y, z+l); ±(x+h i-y, z). 

The axes of this description differ from those used for chrysoberyl (book, 
p. 293) by an interchange of a and b. 

This structure must be revised since some of its interatomic distances 
are impossible; for example Be-Si(l)=0.54 A, Be-O(3)=0.72 A, Si(l)- 
0(3)-1.13 A (see Table VII). 
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Table VII. Parameters op the Atoms in Epididymite 

Atom No. per cell Position X y z 

Na(l) 4 (a) 0 0 0 

Na(2) 4 (b) 0 i 0 

Be 8 (d) 0.035 0.250 0.052 

Si(l) 8 (d) .065 .200 .060 

Si(2) 8 (d) .435 .200 -.060 

Si(3) 8 (d) .335 .250 .000 

OH(l) 4 (c) -.155 .150 1 4 
OH(2) 4 (c) .041 .250 i 
0(1) 8 (d) .040 .000 .145 
0(2) 8 (d) .040 .500 .145 
0(3) 8 (d) .000 .250 .0]0 
0(4) 8 (d) .167 .000 -.040 
0(5) 8 (d) .167 .500 -.040 
0(6) 8 (d) .182 .250 .130 
0(7) 8 (d) .318 .250 -.130 

C. Two-dimensional Silicate Nets 

{aw) The atomic arrangement which has been given to the mica mus¬ 
covite, KAl2(AlSi3)Oio(OH)2, through a study of photographic and spec- 
trometric intensities is based on Cjh (book, p. 343). Approximate param¬ 
eters of its atoms, all of which except potassium are in general positions, 
are listed in Table VIIL The central atoms of one quarter of the tetra- 
hedra linked together to produce sheets are aluminum instead of silicon. 

{ax) Six chlorites with the approximate composition Al2Mg6Si30io(OH)8 
possess four-molecule monoclinic units having dimensions within the limits 
a^=5.304-5.352 A, b^=9.187-9.270 A, c^=28.306-28.582 A, i8=97°9'. Their 
space group is considered to be either Cgh or Cgh- Adopting earlier sugges¬ 
tions that the brittle micas are built up of alternate mica- and brucite-like 
layers, structures have been assumed and compared with intensities on 
powder photographs. A grouping with the symmetry of C^h has been 
preferred but it is obvious that at least until the arrangements based on 
Cgh are definitely eliminated the chlorite structure has not been established. 

{ay) Taking the data from powder photographs practically identical 
structures have been proposed for a talc, Mg3Si40io(OH)2, and for pyro- 
phyllite, Al2Si40io(OH)2. The distribution within layers is that previously 
suggested but the layers are said to be stacked according to the require¬ 

ments of Cgh, not of Cgh- Parameters have been proposed but additional 
confirmation and a more precise description of the arrangement is de¬ 
sirable. 

{az) The clay minerals with their pronounced micaceous cleavage 
should have silicon-oxygen tetrahedra united to form sheets. Structures 

built up of such sheets have been proposed for kaolin, dickite and nacrite, 
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Table VIII. Parameters op the Atoms in Muscovite 

Atom No. per cell Position X y z 

OH 8 (f) 0.062 0.083 0.055 
0(1) 8 (f) .062 .417 .055 

0(2) 8 (f) .062 .250 .055 
0(3) 8 (f) .478 .083 .164 

0(4) 8 (f) .228 .166 .164 

0(5) 8 (f) .228 .332 .164 

(Si+Al)(l) 8 (f) .033 .417 .135 
(Si+Al)(2) 8 (f) .033 .250 .135 
A1 8 (f) .250 .083 0 

K 4 (e) 0 .083 .250 

each with the composition Al2Si206(0H)4. These groupings, based of 
necessity on powder photographic data and not conclusively proved, are 
similar; they differ mainly in the orientation of their silicate layers. Each 
is developed from Cg with all atoms in general positions: (a) xyz; x+l, 
y+^, z; X, y, zH-^; x+^, ^~y, z+|. Kaolin and dickite have four-molecule 
cells; the unit of nacrite is twice as big. The atomic parameters are 
listed in Tables IX and X. Other arrangements for both kaolin and 
dickite are in almost equally good agreement with the data. It is sug¬ 
gested that some samples may have these alternative groupings—or one 
which combines both. The mineral anauxite resembles kaolin but con¬ 
tains a greater amount of silicon. If this silicon replaces aluminum, as 
has been proposed, it would have a hitherto unknown six-fold coordination. 

Some measurements have indicated that the substance called mont- 
morillonite has an orthorhombic cell similar in size and shape to the 
monoclinic cell of kaolin (1933, 205). 

(ba) Apophyllite is a mineral which is sometimes considered a zeolite, 
sometimes more nearly a mica. Some water can be driven from it without 

Table IX. Atomic Parameters for Kaolin and Dickite 

Kaolin Dickite 
Atom X y z X y z 

Aid) 0.25 -0.17 0 0.25 0.41 0 
Al(2) .25 .17 0 .25 .08 0 
Si(l) .01 .60 0.19 .14 .25 0.19 
Si(2) .01 .17 .19 -.36 .08 .19 
0(1) -.05 .60 .08 .11 .25 .08 
0(2) -.05 .17 .08 -.39 .08 .08 
0(3) .03 .33 .23 ,16 .42 .23 
0(4) .28 -.41 .23 .41 .17 .23 
0(5) .28 ,08 .23 -.09 .17 .23 
OH(l) -.06 -.17 .08 -.39 .42 .08 
OH(2) -.05 0 .42 -.11 .25 .42 
OH(3) -.45 .17 .42 .39 .08 .42 
OH(4) .06 .33 .42 .39 .42 .42 
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Table X. Atomic Parameters for Nacrite 

Atom X y z Atom X y z 

Al(l) 0.75 0.33 0 0(6) -0.08 0.50 0.29 

Al(2) .75 0 0 0(7) -.08 .17 .29 

Al(3) .08 0 0.25 0(8) .44 -.17 .36 

A1(4) .08 -.33 .25 0(9) .19 -.42 .36 

Si(l) .43 .33 .09 0(10) .19 .08 .36 

Si(2) .43 0 .09 OH(l) -.08 .17 .04 

Si(3) .43 -.33 .34 OH(2) -.26 -.33 .21 

Si(4) .43 0 .34 OH(3) -.26 0 .21 

0(1) -.08 .50 .04 OH(4) -.26 .33 .21 

0(2) -.08 -.17 .04 OH(5) -.08 -.17 .29 
0(3) .44 .17 .11 OH(6) .08 -.33 .46 
0(4) .19 .42 .11 OH(7) .08 0 .46 

0(5) .19 -.08 .11 OH(8) .08 .33 .46 

loss of structure but this is more difiScult to do than with the true zeolites 
and the lost water is not readily reabsorbed. The arrangement given it 
from a study of rotation photographs and some spectrornetric measure¬ 
ments is mica-like and contains hydroxyl groups rather than H2O mol¬ 
ecules. Its two molecules of composition Ca4Si802o-8H20 KF are in 
the following positions (1930, 352, p. 92) of Dl^,: 

2F: (a) 000; 2 K: (b) 00^; MO 
8 Ca: (h) uvO; vuO; v+i, u-f i, M* u+|, |-v, uvO; vuO; |-v, ^-u, 

^~u, v+^, § with u= 0.120, v= 0.243 
8 0(1): (g) u, u+h i; u+J, u, i; u, |-u, 1; J-u, u, i; u, u+i f; 

u+l, u, f; u, |-u, f; ^-u, u, | with u=0.362 
16 0(2): (i) ±(xyz);±(yxz);±(xyz);±(yxz);±(i--x, y+iz+l); 

±(i-y, i-x, z+j); M^+h z+l); ±(y+2, x+i z-hM 
with x== 0.089, y= 0.184, z=0.217 

16 0(3): (i) XiyiZi; etc. with Xi=0.287, yi=0.117, zi=0.094 
16 0(4): (i) X2y2Z2; etc. with X2==0.237, y2=0.445, Z2=0.094 
16 Si: (i) x'y'z'; etc. with x'=0.237, y'=0.091, z'=0.188. 

D. Three-dimensional Silicate Nets 

The zeolites have the surprising property of being able to lose and to 
reabsorb water without destruction of their underlying atomic arrange¬ 
ments. Previous studies [see (to)] of analcite, NaAlSi20c-1120, have in¬ 
dicated that this zeolite consists of a three-dimensional network of inter¬ 
locking AIO4 and Si04 tetrahedra with metal atoms and water molecules 
occupying holes in the framework thus formed. Measurements on several 
other zeolites have now yielded similar results. 

(bb) A recent investigation of analcite indicates that it is not»cubic 
but tetragonal with Djj as the correct space group. It has also been 
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shown that dehydration does not seriously alter the observed powder 
pattern of this zeolite. 

(be) The structure found for natrolite from photographic spectral data 
has the symmetry of C^v and contains eight molecules of the composition 
Na2Al2Si30io-21120, All atoms except one set of silicon are in general 
positions (1930, 352, p. 55): 

(b) xyz; xyz; x+|, l-y, z+l; i-x, y+h z+i and three sets of similar 
points about J-|0, |()'|, OH- 
The parameters of these atoms are listed in Table XI. Si(l) atoms are 
in special positions (a) OOu; etc. with u=0; i.e. at the points 000; H^i 
jOH OH; iH; IH; fil; iil- The nature of the tetrahedral network and 
the positions occupied by water molecules can be seen from Figure 329. 

Besides closely agreeing determinations of cell dimensions on natural 
natrolites from several sources, cell data exist on four synthetic com¬ 
pounds of this type (Table Xli). 

Table XL Parameters for Atoms op Natrolite 

Lying in General Positions 

Atom No. per cell X y z 

Na 16 0.222 0.028 0.625 
A1 16 .036 .089 .625 
Si (2) 16 .153 .208 .625 
0(1) 16 .069 .180 .625 
0(2) 16 .014 .067 .875 
0(3) 16 .183 .236 .375 
0(4) 16 .097 .042 .500 
0(5) 16 .208 .153 .750 
HjO 16 .069 .180 .125 

Fig. 329.~A projection upon its c-face 
of one eighth of the unit of natrolite, 
NajAhSiaOio-21120. The small light 
circles are Si, the ringed small circles 
are A1 atoms. Na atoms are shown 
by circles of intermediate size; the 
largest ringed circles are H2O mol¬ 
ecules. 

Table XII. Cell Dimensions on Substituted Natrolites 

Compound K Co 
Na,Al2Si,Oio‘2H20 18.3 18.6 6.57 
Li2Al2Si80io-2H20 18.0 18.6 6.5 
AgjAhSiaOio * 2H2O 18.6 18.9 6.6 
(NH4)2Al2SiiOio anhydrous 17.9 18,4 6.6 
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(bd) The X-ray patterns of scolecite, CaAl2Si30io-31120, are indis¬ 
tinguishable from those of natrolite so that it must have a unit of prac¬ 
tically the same size and shape. Earlier it was suggested (1930, 258) that 
Ca+3 H2O of scolecite replace 2 Na+2 H2O of natrolite. A recent study 
proposes instead that Ca atoms in the former occupy half the Na posi¬ 
tions in natrolite leaving the other half vacant and that the eight new 
H2O molecules go into half the 16-fold unoccupied holes in the natrolite 
structure with the approximate parameters x=0.22, y= 0.028, z=0.125. 
No data are available for distinguishing between these possibilities. 

(be) Mesolite, Na2Ca2Al6Si9O30*8H2O, is another zeolite which gives 
a pattern nearly identical with that of natrolite. The large cell of Table I 
is indicated by certain faint lines seen on some rotation photographs. 

(bf) Data from spectral photographs have been used to assign an 
atomic arrangement to the rhombohedral zeolite chabazite. The atoms 
of the two CaAl2Si4012-61120 molecules are in the following positions of 

DL: 

2 Ca; (c) =fc(uuu) with u=0.17 
6 0(1): (f) ± (uuO); ± (uOu); ± (Ouu) with u= 0.34 
6 0(2): (g) ±(uu|); ±(uju); ±(§uu) with u== 0.14 
6 0(3): (h) ± (uuv); ± (uvu); ± (vuu) with u= = 0.35; 
6 0(4): (h) u'uV withu'=0.13, v'=C 1.50 
H20(1); (h) UiUiVi with Ui=0.31, Vi=0.70 
H20(2): (h) U2U2V2 with U2=0.14, V2==—0.08 
(Si+Al); (i) ± (xyz); ± (yzx); ± (zxy); ± (yxz); ± (xzy); ± (zyx) 

with x==0.23, y=0.44, z=-0.01. 

X-ray studies have been made of the dehydration of chabazite. It 
has also been shown that mercury can replace the water in this zeolite 
without destroying its diffraction pattern; by one investigator (1932, 286) 

this has been taken to mean that the water molecules do not occupy 
definite positions within the chabazite structure. 

(bg) Another zeolite to which an atomic arrangement has been as¬ 

signed is edingtonite, Ba2Al4Si6O20*8H2O. There is some uncertainty as 
to the true symmetry of this mineral. Samples of Swedish origin have 

been found to be orthorhombic with ao=9.56 A, bo=9.68 A, Co=6.53 A; 

their space group has been reported as V*. Material from Old Kilpatrick, 

Scotland with the cell dimensions of Table I is said to be completely 
tetragonal. 

The Laue photographs of edingtonite from B5hlet, Sweden are ap¬ 

parently tetragonal. Proceeding on the assumption that its atomic ar¬ 

rangement does not depart significantly from this higher symmetry, 
photographic spectral data have been used to place its two molecules in 

the following special and general positions of Vj (1930, 352, p. 74): 
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Ba: (c) 0§u;^0uwithu=0.375 (Al+Si)(l): (a) 000; ^0 
HjOCl): (e) u, |-u, v; |-u, u, v; u, u+h v; u+^, u, ^ 

with u=0.333, v= 0.875 
H20(2): (e) u', |~u', v'with u'= 0.103, v'=0 
0(1): (e) Ui, Ui, Vi with Ui=0.333, Vi=0.375 
0(2^* (f) xyz; yxz; xyz; yxz; i~x, y+h 2; i-y, i-x, z; 

x+l; i-Yy z;y+*L x+l, z withx=0.055, y=0.194, z=0.472 
0(3): (f) XiyiZi with Xi=0.128, yi=0.047, zi=0.139 
(Al-|-Si)(2): (f) x'y'z' with x'=0.186, y'=0.103, z'=0.375. 

The similarity between the tetrahedral strings in this mineral and in 
other zeohtes can be seen by comparing Figure 330 with Figure 329 for 
natrolite. In this edingtonite arrangement four H2O molecules are co¬ 
ordinated about each barium atom. The positions chosen for water are 
considered most probable but because of the heavy barium the available 
X-ray data cannot locate them uniquely. 

Fig. 330.—A basal projection of the 
tetragonal structure given to eding¬ 
tonite, Ba2Al4Si602o *8^1120. A1 and 
Si atoms, which are not separately 
determined, are the smallest circles; 
intermediate circles are Ba. Mol¬ 
ecules of H2O are heavily ringed. 

(bh) The true unit prism of thomsonite, NaCazAUSisOjo-hHjO, contains 
four molecules (Table I). There is, however, an approximate halving along 
the c direction that suggests a two-molecule pseudo-unit. A structure 
based on this pseudo-cell with its atoms in the following positions of Vl 
is thought to be approximately correct. 

Ca; 
(2 Ca-l-2Na): 
(2Si+2 Al): 
H*0(1): 
H20(2): 
HsO(3); 
0(1): 
0(2): 

(c) 
(h) ±(uOv); ±(f—u, §, v) with u=0.069, v=0.25 
(g) ±(Hu); ±(fiu) with u=0.875 
(e) rfc(OuO); ±(|, u, 0) with u=0.139 
(h) UiOvi with Ui=0.403, Vi=0.75 
(h) UaOv* with U2=0.111, Vs=0.75 
(f) ±(iu§); ±(0, u-bj, J) with u=0.361 
(h) u'Ov' with u'=0.402, v'=0.25. 
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Table XIII. Parameters for Atoms of Thomsonite 

Lying in General Positions 

Atom No. per cell X y z 

0(3) 8 0.167 0.194 0.75 

0(4) 8 .180 .119 .375 

0(5) 8 .305 .139 0 

0(6) 8 .375 .194 .375 

(Si+A])(2) 8 .125 .194 .500 

(Al+Si)(3) 8 .305 .125 .250 

The rest of the atoms are in general positions: (i) ±(xyz); db(xyz); x, 
i~y, z); ±(x+5, y, z), with the parameters of Table XIII. It has been 
suggested that this simplified structure departs from the true one mainly 
in the distribution of A1 and Si atoms within the positions assigned to 
them as centers of oxygen tetrahedra. The existing data are inadequate 
to show whether this is the case. 

The axes of this description (abc) are connected with those of 1930, 
352, p. 61 (X'Y'ZO by the relations: a=Z', b-X', c= Y'. 

(bi) X-ray patterns have been made of partially dehydrated heulandite 
and of the /3-heulandite obtained by dehydrating above 210° C. The 
former gives a heulandite-like pattern and takes up water reversibly. The 
0-form cannot be reversed. Digestion of heulandite in HCl results in a 
silica which, though pseudomorphic after the original crystal, yields an 
amorphous X-ray pattern. 

(bj) Other minerals which have been found to have three-dimensional 
linked Si04 and AIO4 tetrahedral networks are members of the sodalite 
group. 

A structure for sodalite itself, Na4Al3Si30i2Cl, has already been pro¬ 
posed [(x) book, p. 352]. This was developed from the space group Tj. 
Similar arrangements have been suggested for haiiynite and noselite. 
Writing the formula for haiiynite as essentially Na4Al3Si30i2S04 with 
some substitution of calcium for sodium, the necessary atomic positions, 
already listed for sodalite, [(x) book, p. 352], are: 

S; (2a) 000; Mi Si: (6f) 0M;etc. Al: (6g) M, etc. 
Na: (8a) uuu with u=0.222 0(1): (8a) u'u'u'with u'«-0.10 
0(2): (i) xyz with x=0.136, y=0.475, z=0.147. 

The coordinates for noselite are nearly identical, the assumption being 
made that only some of the sulfate positions centering about 000 and Mi 
are occupied. For Na, u=0.217; for 0(1), u'=—0.100; for 0(2), x«0.136, 
y«0.475, z=0.147. 

A debate over the true formula of haiiynite has led to another, but 
closely related, structure based on T\, Considering this mineral to be a 

solid solution of the composition (Na, Ca)4^Al6Si6024-(S04)i«2, sodalite 
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Table XIV. The T^ Structubes for Sodalite and Noselite 

Sodolite Noselite 

Arrangement Atom Parameters Atom Parameters 

(la) 000 Cl — S — 

(lb) m Cl — — 

(12f) uOi; etc. (6Al+6Si) u=0.25 (6Al+6Si) u-0.25 

(4a) uuu; etc. Na(l) u=0.175 Na(l) u-0.150 

(4a) u'u'u'; etc. Na(2) u'-0.675 Na(2) u'-0.750 

(4a) UiUiUi) etc. — — 0(1) u,-0.897 

(12g) uuv; etc. 0(1) u-0.147 

V-0.445 

0(2) u-0.144 

v=0.473 

(12g) u'u'v'; etc. 0(2) u'-0.660 

v' =-0.056 

0(3) u'-0.645 

v'--0.028 

(4a): uuu; utiu; uuu; tiuu 

(12f): uOJ; uOJ; uJO; uiO; iuO; |u0; Ou^; OuJ; OJu; O^u; JOu; jOu 

(12g): uuv; uuv; uut^; uuv; vuu; vuu; wu; vQti; uvu; tivu; uvti; uvQ. 

and noselite have been assigned the groupings of Table XIV. Upon this 
basis some but not all cells of haiiynite would contain SO4 groups in ap¬ 
proximately the positions (lb) and (4a) [for 0(1)] of noselite; Ca would 
replace Na(l) or Na(2). A convincing choice between these alternative 
arrangements cannot be made from the existing X-ray data. 

It has been found that the two minerals ittnerite and skolopsite (1934, 
162) give weak haiiynite patterns and presumably are alteration products. 

None of these more recent studies of substances related to the ultra- 
marines (aa) gives support to the suggestion earlier advanced that their 
alkali atoms are wandering’^ without fixed positions in the structure. 

(6fc) The following structure, which gives qualitative agreement with 
the data from two oscillation photographs, has been proposed for zunyite, 
Ali8Si602o(OH, F)i8C1. Based on T^ it places four molecules within the 
unit cube. Atoms are in points having the coordinates listed below and 
in three similar sets of points (1930, 352, p. 128) about iJO; ^0|; 0^^. 

Cl: (4c) m Si: (4d) IH Al(l): (4e) HI 
Si: (16a) uuu; uuu; uuti; uuu with u=0.117 
0(1): (16a) UiUiUi with Ui=—0.177 
0(2): (16a) U2U2U2 with U2=0.184 
(OH, F)(l): (24a) uOO; uOO; OuO; OuO; OOu; OOu with u=0.273 
(OH, F)(2): (48d) uuv; uuv; uuv; uuv; vuu; vuu; vuu; vuu; uvu; uvu; 

uvu; uvu with u=0.181, v=0.545 
0(3): (48d) u'uV with u'=0.139, v'=0.006 
Al(2): (48d) UiUiVi with Ui=0.089, vi= -0.228. 

(U) The hexagonal unit of cancrinite contains one molecule whose 
ideal composition is said to be Ca2Na6Al6Si6024-2C0s. An arrangement 
which is compared with some estimated intensity data from rotation 
photographs has been developed from Cj. It is as follows: 
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2 Cai (b) f, u+^ with 11—0.36 
2 C: (b) iK; I, i u'+l with u'=-0.14. 

The rest of the atoms are in general positions; 

(c): xyz; y~x, x, z; y, x-y, z; x, y, z+|; x~y, x, z+i; y, y-x, z+§ 

with the parameters of Table XV. 

Table XV. Parameters for Atoms op Cancrinite 

Lying in General Positions 

Atom No. per cell X y z 

Na 6 0.50 0.50 0.22 
Si 6 .03 .26 .26 
Al 6 .26 .23 .24 
0(1) 6 .05 .36 .01 
0(2) 6 .36 .32 -.03 
0(3) 6 .17 .27 .26 
0(4) 6 -.13 .16 .24 
0(5) 6 .20 .64 .36 

(6m) The feldspars have a grouping which thus far has resisted complete 
analysis. A few years ago (1929, 289a; 1931, 391) a type of structure was 
proposed which did not provide reasonable interatomic distances. Re¬ 
cently a different arrangement has been suggested for a sanidine (KAlSisOg, 
with some Na replacing K). This gives approximately the right atomic 
separations and is in fairly good agreement with the reflections on several 
rotation photographs. It has atoms in the following special and general 
positions of C^h with the parameters of Table XVI: 

(g) d=(0u0); =b(§, u+f, 0) (i) ±(u0v); dc:(u+-|, i v) 
(j) =h(xyz); ±(xyz); zh(x+|, y+i z); ±(x+|, ^~y, z). 

A projection of the unit cell on its ac-plane is reproduced in Figure 331. 
Its interlocking network of (Al, Si)04 tetrahedra is seen to be very differ¬ 
ent from those deduced for the sodalite and zeolitic minerals. 

Measurements upon celsian, BaAl2Si208, have indicated that it is tri¬ 
clinic but that it probably does not depart far from the monoclinic arrange- 

Table XVI. Parameters op the Atoms in Sanidine 

Atom No. per cell Position X y z 

0(1) 4 (g) 0 0.139 0 
0(2) 4 (i) 0.658 0 0.236 
0(3) 8 (j) .819 .153 .236 
0(4) 8 (j) .000 .319 .250 
0(5) 8 (j) .153 .125 .417 
Si+Al(l) 8 (j) .000 .186 .217 
Si+Al(2) 8 (j) .703 .111 .347 
K 4 (i) .294 0 .139 



STRUCTURES OF THE SILICATES 127 

Fig. 331a.—(left) A portion of the monoclinic structure found for sanidine, KAlShOsi 
as projected on its b-face. The smallest circles are A1 or Si (not distinguished in the 
structure), the largest are O atoms. 

Fig. 3316.—{right) A packing drawing of a. The K ions are line-shaded; two of the 
(Si, Al) atoms are visible as black spheres. 

merit of sanidine. The K-Ba feldspars, adularia and hyalophane, con¬ 

taining up to ca 15% BaO are truly monoclinic. In these minerals there 

is thought to be a haphazard replacement of K and Si by Ba and Al. 

The soda feldspar albite, NaAlSiaOg, though definitely triclinic can be 

described in terms of a sanidine-like cell. It has been found that an ar¬ 

rangement with parameters modified from those of KAlSisOg yields fairly 

satisfactory agreement with photographic data. The cell for this descrip¬ 

tion, being base-centered and hence not the simplest one possible has for 

its general positions the coordinates: (i) =b(xyz); i:(x+|, y+|, z). Its 

parameters are recorded in Table XVII. The similarity between this 

structure and the sanidine grouping is best seen by comparing this table 

with Table XVI. 

Table XVII. Parameters of the Atoms in Albite 

Atom X y z 

0(1) 0.014 0.125 -0.014 
0(2) .611 -.014 .278 
0(3, a) .833 .125 .214 
0(3, b) .311 .361 .250 
0(4, a) .014 .305 .264 
0(4, b) .636 .194 .230 
0(6, a) .194 .139 .389 
0(6, b) .658 .389 .411 
Si4’Al(l, a) .000 .175 .222 

Si+Al(l,b) .472 .328 .233 

Si+Al(2, a) .714 .105 .333 

Si-f Al(2, b) .214 .383 .361 

Na .278 -.167 .172 
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All of the plagioclase feldspars do not have albite-like cells. The units 
of two andesites with albite-anorthite ratios of 3:1 and 2:1 are like albite, 
but anorthite itself, CaAl2Si208, and a labradorite with the ratio 1:1 both 

have Cq axes that are twice as long. 
New data bearing on the cell dimensions of the feldspars are assembled 

in Table XVIII (cf. Table XVIII, p. 351 of book). 

Table XVIII. New Cell Dimensions on Feldspars 

Mineral Symmetry Co a ft 7 

Sanidine Monoclinic 8.45 12.90 7.15 — 116°6' — 

Adularia Monoclinic 8.45 12.90 7.15 — 116°3' — 
HyaJophane (A, B) Monoclinic 8.45 12.90 7.15 — 115°35' __ 

Hyalophane (C) Monoclinic 8.52 12.95 7.14 — 115°35' — 

Celsian Triclinic 8.63 13.10 7.29 ca 90° 116° ca 90° 

Albite Tri clinic 8.14 12.86 7.17 94°3' 116°29' 88°9' 
Andesite Tri clinic 8.14 12.86 7.17 93°23' 116°28' 89°59' 
Labradorite Tri clinic 8.21 12.95 14.16 93°31' 116°3' 89°55' 
Anorthite Tri clinic 8.21 12.95 14.16 93°13' 115°56' 91°12' 

(bn) An earlier (1929, 115) study of wollastonite, CaSiOs, resulted in 

a monoclinic unit. More recently it has been shown to be triclinic. Sim¬ 

ilar cells can be given to pectolite, NaHCa2(Si03)3, and probably to 

schizolite, HNa(Ca, Mn)2(Si03)3. 
(bo) The cell dimensions for epidote quoted in Table I are those of 

1932, 172. The two earlier studies gave it a two-molecule unit with 

half as long. Clinozoisite, an epidote without iron, is structurally like 
the ordinary variety. 

(bp) The structure of nephelite is yet to be determined. A few sug¬ 

gestions have been made but, unsupported by the necessary X-ray data, 
they are of little value. 

(5g) Unit cells have been assigned to two wohlerite-like minerals be¬ 

sides the one quoted in Table I. Lavenite with 20% of its Zr replaced by 

Cas has a^=10.93 A, b^=9.99 A, c^=7.18 A, i3=110°28'; hiortdahlite with 

Ca2 substituting for 25% of its (Zr, F)Na is reported to be triclinic but 

with very similar cell dimensions: a^^ 10.91 A, bo=10.29 A, Co=7.32 A, 
a=90^29', i3=108W, 7=90‘’8'. 

(6r) Mosandrite is a rinkite in which H and OH replace Na and F 

atoms. Though monoclinic the cell dimensions found for it are nearly 

the same as those given to the orthorhombic rinkite. They are a^^ 18.47 
A, b^-5.67 A, c^-7.46 A, /3=9ri3'. 

(bs) The unit cubes of several garnets have been measured. One, a 

48% grossularite-andradite, 52% almandite-pyrope, has a^^ 11.668 A 

(1933, 182). Spessartite gives 11.603 A; partschinite, a spessartite with 
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some iron in place of manganese has ao= 11.613 A (1933, 522). It has 

also been found that a^ for Ca-Fe garnets increases from 11.93 A to 12.14 

A as the titanium content mounts from zero. 

(bt) It is suggested that though they seemingly are tetragonal, the 

scapolites really are complex twinnings of monoclinic and triclinic in¬ 

dividuals. 



Chapter XXA. Structures of Organic Compounds 

Nearly all the X-ray studies of organic crystals being published are 

limited to unit cell and space group determinations. Some, as indicated 

in the large tables, prove molecular symmetry for suitably constituted 

compounds. Others point to the existence of associated molecules in the 

crystalline state. Though a few of these associations, marked A in the 

tables, may be real most of them are to be explained by the choice of too 
large a unit cell. 

Some progress has been made towards an understanding of the atomic 

arrangements in aliphatic structures but most of the increase in our 

knowledge of atomic positions in organic crystals has come through the 

investigation of several aromatic hydrocarbons. 

A. The Structures of Organic Salts and of Metallo-organic Compounds 

(bd) A previous study of Be40 (€211302)6 has indicated that the eight 

molecules in its unit cube are arranged according to the requirements of 

T^. This has been confirmed and it has been shown that by placing 

atoms in the following positions of this space group an arrangement is 

obtained which yields plausible interatomic distances and does not con¬ 

flict with data from Laue and oscillation photographs. 

Be: (32b) uuu; etc. [see XVIIIA, (ce)] with u=-0.060 

0(1): (8f) 000; M; MO; OH; Hi; HI; Hi; HI 
0(2): (g) xyz; etc. with x=-0.163, y=-0.064, z=-0.038 

C(l): (48c) UiOO; etc. with Ui-0.197 
C(2): (48c) u'OO; etc. with u'=0.295. 

As was earlier pointed out this choice of space group implies that the 

two oxygen atoms of the acetate group are geometrically equivalent. 

(be) Two studies of the dihydrate of copper formate, Cu(HCOO)j- 

2H2O, differ both in the size of the unit and in the chosen space group. 

(bf) It is said that the lead atoms in Pb(HCOO)2 have the coordinates 

A) Ay i; H) i; A? A? i; Ay Ay i* 
130 
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Fig. 332.—A projection upon 
one of its a-faces of atoms in 
the tetragonal arrangement 
deduced for Tl(CHs)2l. 
The largest circles are I 
ions, the slightly smaller 
ones are CHs groups. The 
sizes used in this drawing 
are determined by the re¬ 
sults on the methyl substi¬ 
tuted ammonium salts. 
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{bg) An elaborate discussion, based on powder photographs, has been 
given of possible arrangements for the atoms in methyl silicate, (CH3)4Si04. 
It was shown that the structure is based on but the correct grouping 
was not definitely established. 

(bh) Spectral photographs have been used to find an atomic arrange¬ 
ment for the atoms in dimethyl thallium iodide, Tl(CH3)2l. They are in 
the following special positions of 

2T1: (a) 000; 2 1: (b) MO; 00^ 
4(CH3): (e) OOu; OOu; u-f J; |“U with u==ca 0.15. 

The TI-CH3 separation is 2.01 A; the distance between CH3 groups through 
which contact is made along c, is 4.17 A (Figure 332). This large CH3- 
CH3 separation may mean that u should be greater than 0.15. 

I'he bromide and chloride are structurally isomorphous with the iodide 
but the methyl parameter could not be found for them. 

B. The Structures of Substituted Ammonium Salts 

(hi) Quantitative spectrometer measurements have been used to find 
the structure of dimethyl ammonium chlorostannate, [NH2(CH3)2]2SnCl6. 
Atoms are in special and general positions of Cly: 

(a) Ouv; i % v+^ (b) xyz; y, z+|; x+|, y, z+i; xyz 

Table II. The Crystal Structures of Substituted Ammonium Salts 

Substance, symmetry No. mol. References 
and structure type 

Monomethyl Ammonium Cupric 
Chloride 

(NIhCH3)2CuCl4 Ort. 7.30 7.535 18.55 

per cell 

4 1933, 157. 
Dimethyl Ammonium Chlorostan¬ 

nate 
CNB[a(CH3)2]2SnCl6 Ort. (bi) 7.26 14.28 7.38 2 1933, 157; 1934, 60. 
Tetramethyl Ammonium Fluosili- 

cate 
CN(CH3)4]2SiF6 Tet. (bj) 7.88 11.19 2 1934, 57. 
n-Monoamyl Ammonium Chloride 
n-CfiHiiNH,Cl Tet. (bk) 7.03 at 16.70 4 1933, 438. 

Octadecyl Ammonium Chloride 
CisHjTNHaCl Ort. (bl) 

-SO'’ C 

5.45 5.40 69.4 4 1932, 41, 42. 

with the parameters of Table III. The axes of this description, XYZ= 
abc, are connected with those used for an earlier crystallographic descrip¬ 
tion, a'b'c', by the relations X*=a==a', Y=b=c', Z=c=b'. 
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Table III. Parameters of the Atoms in [(CH|)aNH2]2SnClfl 

Atom No, per cell Position X y z 

Sn 2 (a) 0 0.250 0 

Cl(l) 2 (a) 0 .390 0.180 

Cl(2) 2 (a) 0 .110 -.180 

Cl(3) 4 (b) 0.235 .185 .190 

Cl(4) 4 (b) .235 .315 -.190 

N(l) 2 (a) 0 .620 .690 

N(2) 2 (a) 0 .880 .310 

CH,(1) 2 (a) 0 .605 .875 
CH,(2) 2 (a) 0 .895 .125 
CH,(3) 2 (a) 0 .530 .625 
CH.(4) 2 (a) 0 .970 .375 

Fig. 333a.—(left) A portion of the structure of [NH2(CH3)2]2SnCI(j projected on the 
a-face of its orthorhombic cell. The segments of circles, representing NH2, join 
CHa groups (largest circles). The Cl and Sn (smallest circles) of SnCh ions are 
connected by light lines. 

Fig. 3336.—(right) A packing drawing of a. The NH2(CH3)2 ions are line-shaded 
Atoms of Sn cannot be seen. 

The substituted ammonium chlorostannates thus far analyzed have 

been relatively simple distortions of the (NH4)2PtCl6 grouping [XVII, 

(a)]. This arrangement (Figure 333) can be similarly viewed but the dis¬ 

tortion is great. The two C-N bonds of a (CH3)2NH2‘^ ion make the 

tetrahedral angle with one another; the CH3-CI separation, ca 3.83 A, 

is the same as that found in other substituted ammonium chlorostannates. 

(bj) The tetragonal packing found for the atoms in tetramethyl am¬ 

monium fluosilicate, [N(CH3)4]2SiF6, is a distortion of that prevailing in 

the cubic [N(CHs)4]2SnCl6 (u). Atoms are in the following general and 

special positions (1930, 352, p. 82) of with parameters fixed by a series 

of spectrometric measurements (Figure 3^): 



Fig. 334o.—(left) A basal projection of the tetragonal arrangement found for 
[N(CH3)4]2SiFfl. The smallest circles, as N atoms, are each joined to their four 
surrounding CH3 groups by light lines. The heavy dotted circles are the Si atoms 
at the centers of their surrounding F octahedra. 

Fig. 3346.—(right) A packing drawing of a. The CHa groups of the N(CH8)4 tetra- 
hedra are line-shaded. 

2 Sit (a) 000j ^^2 ^ (^) j 
4 F: (e) OOu; OOu; u-f|; h h with u=0.155 
8F: (h) di(uvO); db(vuO); ±(|-v, u+§, ^); db(u+i v+h with 

u=:0.18, v-0.12 
16(CH3): (i) ±(xyz); =b(yxz); rt(xyz); dr(yxz) and eight similar points 

around with x=0.14, y=0.47, z=0.175. 

(bk) In contrast with the two-molecule tetragonal cell found at room 

temperature, a four-molecule tetragonal unit is observed for n-amyl am¬ 
monium chloride both at C02-snow and at liquid air temperatures. The 
observed data are said to indicate that at low temperatures molecular 
rotation is arrested but not necessarily with the carbon chains in equilib¬ 

rium positions. 
(bl) The orthorhombic arrangement found for octadecyl ammonium 

chloride is said to be evidence that in this long chain compound the mol¬ 

ecules are not rotating. 

C. The Structures of Aliphatic and Aromatic Compounds 
Aliphatic Compounds 

(bm) A redetermination of a^ for methane yields a value much lower 
than that previously found and in better agreement with the experimental 
density. The attempt to establish hydrogen positions from these photo¬ 

graphs is undoubtedly of little real significance. 
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(6n) A further study of the structure of iodoform, CHI3, using photo¬ 
graphic data, has confirmed the previous choice of space group and iodine 

positions. Carbon atoms are thought to be in |fu; |, u+i with u 

between 0.50 and 0.60. 
(60) If the space group assigned to these pentaerythritol tetrahalides 

is correct, their molecules cannot have tetrahedral symmetry. 

(67?) Additional spectrometric measurements on urea and their Fourier 

analyses have led to the following more accurate parameters (see book, 

p. 373): u(C) = 0.335, v(O) = 0.60, w(N) = 0.145, t(N) = 0.18. 
{hq) Spectrometric measurements of intensity and Fourier analyses 

have been used in a reexamination of the structure of thiourea, CS(NH2)2* 

Atoms are in the positions of previously chosen, (ab), with the param¬ 

eters (the origin in a center of symmetry): 

C: (c) zh(uvi); ±(j--u, v+^,-|) with u=-~0.14, v=0.10 

S: (c) ±(uiVii); etc. with Ui=0.120, Vi=~-0.007 
N: (d) db(xyz); ±(x, y, ^-z); zt:(x+^, ^~y, z+i); ±(x+i i-y, 2) 

with x=0.278, y=-0.130, z=-0.125. 

The way the molecules pack together is illustrated by Figure 335. In 

contrast with the earlier arrangement all the atoms in a molecule lie in 

one plane. The C-S separation is 1.64 A; NH2 and S of different mol¬ 

ecules are 3.45 A apart. Other interatomic distances are practically the 
same as in urea. 

Fig. 3356.—{right) A packing drawing of a. The C atoms do not appear. 

(6r) Spectrometric measurements of crystals of methyl mrea, CONH2- 

(NHCHs), have been made in an attempt to find its complete structure. 

All atoms are in general positions of V^. Values of x and y atomic param¬ 

eters have been determined from structure factor calculations and Fourier 

analysis. They account for all the (hkO) reflections but a satisfactory 
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structure using them in an explanation of the more complicated (hOl) 

data was not found. 
(6s) A structure for the ordinary {a) form of glycine, CJI2NH2COOH, 

has been deduced which is in good agreement with spectrometric measure¬ 
ments of the simplest reflections but which like that mentioned for methyl 
urea, (6r), is unable to explain the more complex intensities. In this pro¬ 
posed arrangement all atoms are in general positions of Cjh: (e) rh(xyz); 

y-t-§, ^~z) with the parameters of Table V. 
It has been reported that X-ray results indicate the reality of the sup¬ 

posed jS-modification of glycine but the published evidence for this con¬ 
clusion is not convincing. 

Table V. Parameters OF THE Atoms in Glycine 

Atom No. per cell X y z 

0(1) 4 0.42 0.35 0.74 

0(2) 4 .44 .47 .63 

N 4 .88 .33 .15 

C(l) 4 .22 .41 .58 

C(2) 4 .12 .40 .26 

{ht) By choosing axes in the ac-plane different from those of Table IV, 
a-glycylglycine has been given a four-molecule cell with the dimensions 
a^=7.7, b^=9.56, c^-9.5, 125*^20' (1931, 41). 

(6w) Conflicting cell dimensions have been published for the hexagonal 
crystals of 1-cystine. One determination (1931, 41), choosing T)\ as space 
group, finds a six-molecule cell with ajj=5.40 A, c^^57.S A. The other 
with three molecules in its unit has a<5=9.40 A, Co=9.42 A (1931, 22). 

(bv) Recent measurements of the unit cell of the room temperature 
form of succinic acid (1931, 98; 1932, 131) confirm a previous assignment 
of unit cell. 

(bw) The simple hexagonal unit found for dodecanol at room tempera¬ 
ture is considered to show that its molecules are rotating. 

(bx) Positions have been found for the iodine atoms in 1,4 diiodocyclo- 
hexane. They are in general positions of Cjh ’ (c) ±(x3^z); dz(x+i, i—y, z) 
with x=0.150, y=0.135 or 0.305, z=0.385. An earlier space group assign¬ 
ment, of Cgh (1931, 161), was wrong for this compound and for the isomor- 
phous dibromide. 

(by) Debate over the unit cell and structure of cellulose continues, the 
symmetry being sometimes treated as tetragonal, sometimes as ortho¬ 
rhombic and sometimes as monoclinic. The last is most probably correct. 
It is obvious that from the standpoint of sound crystal analysis the ar¬ 
rangements frequently described for cellulose and its derivatives must be 
considered as speculations, more or less compatible with chemical infor¬ 
mation, and perhaps not conflicting with the very limited X-ray data at 
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hand. Assignments of positions to the atoms in rubber, in silk fibroin 
and in most other macromolecular substances are equally uncertain. 

Aromatic Compounds 

Greater progress has been made in determining atomic positions in 
crystals of aromatic compounds. This is largely due to the fact that their 
benzene rings provide large building blocks that always have the same 
size and shape and can enter into the known units in only a limited num¬ 
ber of ways. 

ihz) It has been found that the iodine atoms in o-iodobenzoic acid, 
CfiIl4lCOOH, are in general positions of Cgh-* (e) rb(xyz); dr(x-f-|, i~y, z) 
with the parameters x=0.14, y=0.08, z=0.02. The positions of the other 
atoms arc not known. 

{ca) p-Dibromobenzene, C(]H4Br2, has its bromine atoms in general 
positions of ( 2h- (e) it(xyz); ±(x, y+|, \ — z) with x=0.03, y=0.167, 
z=0.170. For the isomorphous chloride Xi=0.04, yi=0.16, zi=0.16. 
Parameters compatible with atomic packing and with observed optical 
properties have been suggested for the carbon atoms. The available X-ray 
data are not able to show whether these carbon positions are right. 

The dilTraction effects of p-brornochlorobenzene, C6H4BrCl, are inter¬ 
mediate between those of the chlorine and bromine derivatives. This 
presumably means that the molecules go into the structure, with half the 
bromine atoms pointing one way and with the other half pointing in the 
opposite direction. 

(c6) The p-diiodobenzene, €<511412, is not isomorphous with its ch!oro- 
and bromo-analogues. Iodine atoms in the orthorhombic unit are in gen¬ 
eral positions of (c) zb(xyz); ±(x4-i ^-y, z); =b(x, y-fi, |-z); 

y, z+2) with x=0.172, y=0.40, z=0.22. 
m-Diiodobenzene also is orthorhombic. Iodine atoms are at ±(uvj); 

±(uvf); ±(u+i, v+^, i); =b(|"-u, v+l, 1) with u=0.172, v=0.200. The 
space group may be 

(cc) A thorough study, including spectrometric measurements and a 

Fourier analysis, has been made of the crystal structure of durene, 1, 2, 4, 5 

C6H2(CH3)4. All atoms are in general positions of (e) d=(xyz); 

l~y) z) with the parameters listed in Table VII. This arrange¬ 
ment (Figure 336) gives a molecule that, like C6(CH3)6, is planar. The 
packing is, however, a totally different one. In this crystal the nearest 

approach of atoms belonging to adjacent molecules is relatively large — 
3.90 A. 

(cd) The X and z parameters of both the chlorine and the carbon atoms 

in C^Cle have been selected from a Fourier analysis of the spectrometrically 
determined (hOl) intensities. Data needed to establish the y parameters 

could not be obtained so that the structure remains only partly known. 
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Table VII. Parameters op the Carbon Atoms in Durenb 

Atom No. per cell X y z 

C(l) 4 0.188 0.314 0.267 
C(2) 4 .093 .157 .127 

C(3) 4 .037 -.005 .212 
C(4) 4 -.055 -.162 .090 
C(6) 4 -.108 -.325 .194 

Fig. 336.—A projection upon 
the b-face of molecules in 
the nionoclinic structure of 
durene, CoH2(CH5)4. The 
sizes civen C and CHs in 
this drawing are without 
real significance. 

All atoms are in general positions of Csh (Jiot Cgh, as previously chosen): 
(e) d=(xyz); zb(x, z+l). The x and z parameters are given in Table 
VIII. 

Table VIII. Parameters OP THE Atoms in Code 

Atom X z Atom X z 

C(l) 0.181 0.026 Cl(l) 0.412 0.070 
C(2) .118 .087 Cl(2) .278 .205 
C(3) ,048 -.062 Cl(3) .133 -.137 

(ce) A structure has been proposed for quinhydrone, C6H4O2-06114(011)2, 
which makes the oxygen atoms and hydroxyl groups equivalent. Though 
parameters have been published adequate data in support of them are 
lacking. 

(cf) A partially described and tested structure has been suggested for 
diphenyl, CeHs-CeHs. No atomic coordinates have been published. The 
orientation of its molecule within the unit may be reproduced by rotating 
a planar (Cell5)2 molecule having its center at a center of symmetry and 
its plane in be. This rotation amounts to 32® about the c-axis and 20® 
about the b-axis. 

(eg) A complete determination based upon quantitative intensity data 
and their Fourier analysis has been made of the atomic arrangement in 
naphthalene, CioHg. All atoms are in general positions of Cjh: (e) db(xyz); 
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dr(x+^, §—y, z) with the parameters of Table IX. The moleciiles of this 
grouping pack together as shown in Figure 337. Atoms of neighboring 

molecules come within 3.60 A of one another. 

Table IX. Parameters of the Atoms 

IN Naphthalene 

Atom X 

Cd) 0.087 

C(2) .114 

C(3) .047 

C(4) .074 

C(5) .007 

y z 

0.014 0.328 

.162 .217 

.104 .035 

.251 -.078 

.193 -.260 

Fig. 337a.—{left) A projection of a portion of the monoclinic structure of naphthalene, 
CioHs, upon its b-face. The circles represent C atoms. Only parts of the molecules 
belonging to the bottom half of the cell are shown. 

Fig. 3376.—{right) A packing drawing of a indicating the way the naphthalene mol¬ 
ecules contact with one another. 

(ch) The structure of anthracene^ CuHio, also has been completely 
worked out from a series of spectrometer measurements and their Fourier 
analysis. Like naphthalene the atoms of its two-molecule monoclinic cell 
are in general positions of Cli,: (e) ±(xyz); ±(x-|-§, |-y, z). The param¬ 
eters are those of Table X. The close similarity that exists between this 
anthracene arrangement (Figure 338) and the naphthalene grouping (Fig¬ 
ure 337) may be most easily seen by comparing the two figures. In 
anthracene contacting molecules are slightly farther apart, the nearest 
intermolecular atomic separation being 3.77-3.80 A. 

(ci) Another ring structure, established from quantitative data, is that 
of p-diphenylbenzene, C«Hs(C6H4)C6H6. With its atoms also in general 
positions of Cl^: (e) ±(xyz); ±(x+i, §-y, z) (parameters in Table XI) 
this arrangement (Figure 339) is very similar to the two preceding. It 
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Fig. 338a.—(left) A portion of the monoclinic structure of anthracene, CuHio, pro¬ 
jected on a b-face of its monoclinic unit. The close similarity between the arrange¬ 
ments found for naphthalene and anthracene may be seen by comparing Figures 
337 and 338. 

Fig. 3386.—(right) A packing drawing of a. In this and Figure 3376 the radius chosen 
for the atomic spheres is that suggested by the closest approach of C atoms in ad¬ 
jacent molecules. 

Table X. Parameters op the Atoms in Anthracene 

Atom X y 2 Atom X y z 

C(l) 0.094 0.032 0.369 C(5) 0.033 0.130 -0.089 

C(2) .124 .157 .279 C(6) .065 .254 -.179 

C(3) .062 .082 .140 C(7) .002 .177 -.319 

C(4) .095 .207 .050 

Table XI. Parameters op the Atoms in p-Diphentlbenzene 

Atom X y z AUm X y z 

C(l) 0.059 0.182 0.064 C(6) -0.082 0.182 0.368 
C(2) -.046 0 .100 C(7) -.187 0 .402 

C(3) -.105 -.182 .036 C(8) -.246 -.182 .339 
C(4) -.094 0 .204 C(9) -.200 -.182 .239 

C(6) -.036 .182 .268 

differs from them mainly in the fact that the long axes of its molecules 
are parallel to the ac-plane, whereas those of CioHs and CuHio are tilted 
at considerable angles. 

Diphenyl, CeHs-CeHs, p-diphenylbenzene, C6H6(C6H4)C6H6, and qua- 
terphenyl, C6H6(C6H4)2C6Hb, have nearly equal a^ and b^ axes and 
angles. The molecules must therefore be similarly oriented in their 
crystals. 
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Fig. 340.—(right) A portion of the 
chrysene, CisHh, structure projected 
on its b-face. Only the molecules 
midway along the c-axis are fully 
shown. 

Fig. 339.—(left) A portion of the 
structure of p-diphenylbenzene, 
C6H4(C6H5)2, projected on the b-face 
of its moiioclinic unit. As in the fig¬ 
ures immediately preceding circles 
represent C atoms. Only parts of 
the molecules associated with the 
upper half of the unit are included. 

Table XII. Parameters of the Atoms in Chrysene 

Atom 

C(l) 
C(2) 

C(3) 

C(4) 

C(5) 

C(6) 

0(7) 

C(8) 

C(9) 

No. -per cell 

8 
8 
8 
8 
8 
8 
8 
8 
8 

X y 
-0.026 0.086 

.018 .084 
-.036 .256 

.010 .254 

.108 .079 

.161 -.095 

.116 -.089 

.170 -.262 

.125 -.260 

0.013 
.074 

.100 

.161 

.196 

.171 

.110 

.084 

.023 
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CioHe—CH 
(cj) Chrysene, | || , differs from the preceding aromatic hydro- 

C6H4—CH 
carbons in having a four-molecule arrangement developed from Cgh* All 
atoms are in the general positions: (f) zb(xyz); ±(x, y, dz(x+J, y+i, 
z-fi); ±(2 —X, y-f L z). The parameters of Table XII, deduced from 
spectrometric measurements of intensity, lead to the symmetrical ring 
formula outlined in one of the molecules of Figure 340. Atoms of adjacent 
chrysene molecules come especially close to one another (ca 3.5 A). 

(ck) It is said that there exists a 1:1 compound of 2, 4, 6 C6H2C1(N02)3 

and 2, 4, G C6H2CH3(N02)3 which has cell dimensions identical with those 
of 2, 4, G C6H2CH3(N02)3. 

(cl) It is intercwsting that styphnic acid, C6H(N02)3(OH)2, and 2, 4, 6 

trinitrophloroglucinol, (J(N02)3(0H)3, which differ by an OH group, should 
have similar crystal structures. 

(cm) It has been pointed out (1933, 3G1) that azobenzene, CeHsN^ 
NCcHs, stilbene, C6H5C1I=CT4C6H5, and tolane, CelisC^CCeHs have 
cells of nearly the same shape and size. 

The unit of dibenzyl, 06H5C'H2—CII2C6H5, differs only in having a 
c-axis reported to be half as long. Two structures have been proposed for 
this crystal. One of them gives a molecule that is almost planar. The 
molecule of the other has its two phenyl groups stepped with respect to 
one another but lying in parallel planes. Unfortunately the atomic param¬ 
eters for the second arrangement have not been given. 

(cn) From a preliminary study of 1,3,5 triphenylbenzene, C6H3(C6H6)3, 
it has been concluded that the molecular centers are in general positions 
of Cly-. (a) xyz; x, y, z+§; x+^, |-y, z; J-x, y+|, z+5 with z=0. Atomic 
parameters have not yet been found. 

(co) A preliminary note, without a complete description of atomic 
positions, has recently been published on p-quinone, C6H4O2. 

Recent Aliphatic Structures 

(cp) Laue and spectral photographs have been used to assign positions 
to the atoms in oxalic acid dihydrate, (C00H)2*2H20. The space group 
is Cah with two molecules per cell. Writing the coordinates of the general 
positions of this space group as (e) =b(xyz); =b(x+|, y, the chosen 
atomic parameters are those of Table XIII. As can be seen from Figure 
341, each water molecule is nearly equally distant (2.60-2.87 A) from three 
oxygen atoms. Within a molecule C-C*1.59 A, C-0=1.25 A; the angle 
between C-0 bonds is 126°. 
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Table XIII. Parameters of the Atoms in 

(C00H)2*2H20 

Atom X y z 

C -0.041 0.041 0.056 

0(1) .089 -.062 .150 

0(2) -.222 .222 .041 

H2O -.444 -.375 .174 

Fig. 341.—A b-face projection of the 
molecules of H2C2O4 *21120 associated 
with its monoclinic unit. The large 
circles are II2O molecules. The O 
and OH of carboxyl groups, which 
are equivalent in this structure, are 
shown by the intermediate circles. 
The radii used in this figure were 
determined by convenience only. 

(cq) A spectrometric study of hexamethylenetetramine, C6H12N4, and 
a Fourier analysis of the intensities thus obtained are in complete agree¬ 
ment with one of the earlier investigations of this crystal. Carbon atoms 
are in (12a) vOO; etc. [(as), book, p. 389], nitrogen in (8a) uuu; etc. with 
the same parameters: u=0.12, v=0.23.* 

* On p. 390 of the book, values of u and v have been erroneously interchanged. 
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Appendix 

Bibliography of Crystal Structure Data 

'J'his bibliography continues that published as an appendix to the second edition 
of “The Structure of Crystals.” In adding items through 1930, papers by authors 
who already appear have been given existing numbers with an added a, b, etc.; 
arliolcs by new authors have been arranged alphabetically with new numbers. The 
same i)rocedure has been followed in numbering very recent additions to the lists 
for subsequent years. 

Year ig25 
281. Meisel, K. Dissertation, Hannover. 

Year 1927 

313. Shinoda, G. X-ray Analysis of Cast Alloys II. Bronze, Suiyokaishi 5, 472. 

Year 1928 
253a. Menzer, G. Crystal Lattice of Eulytite, Ccntr. Mineral. GeoL 1928A, 420. 
451. Sarkar, A. N. X-ray Examination of the Crystal Structure of Resorcinol, 

Proc. 16th Indian Sci. Cong. 1928, 92. 

Year 1929 
205a. Machatschki, F. Algodonite and Whitneyite, Neues Jahrb. Mineral. Geol. 

Beilage-Bd. 59A, 137. 205b. X-ray Examination of Remelted Algodonite and Whit¬ 
neyite. Supplement, Centr. Mineral. Geol. 1929A, 371. 

289a. Schiebold, E. Crystal Structure of Feldspars, Fortschr. Min. Krist. Pet. 
14, 62. 

381. Barth, T. F. W. The Symmetry of Potash Feldspar, Fortschr. Min. Krist. 
Pet. 13, 31. (See also Centr. Mineral. Geol. 1928A, 380). 

382. Eulitz, W. An Auxiliary Apparatus for the Orientation of Small Crystals 
for X-ray Investigation, Z. Krist, 70, 50G. 

383. Nakamoto, M. and Sano, G. W^ater Content of Inorganic Compounds I. 
Water Content of Acid Clay of Koto, J. Chem. Soc. Japan 50, 473. 

384. Schiebold, E. and Reininger, H. X-ray Structure Investigations, Giesserei- 
Ztg. 26, 634, 666. 

Year 1930 
3a. Ageev, N. and Sachs, G. The X-ray Determination of the Solubility of 

Copper in Silver, Mitt. deut. Materialprujungsanstalt 13, 50. 
19a. Bragg, W. H. Cellulose in the Light of X-rays, Cellulose 1, 80, 110; 

Nature 125, 315. 
22a. Bragg, W. L. Structure of Silicates, /. Soc. Glass Tech. 14, 295. 
38a. Brill, R. X-ray Determination of the Form and Boundary Surfaces of 

Submicroscopic Crystals, Z. Krist. 75, 217. 
44a. Brukl, A. and Ortner, G. The Sulfides of Gallium, Sitzungsber. Akad. Wiss. 

Wien, Math.-naturw. Kl. Abt. lib, 139, 594. 
45a, Bruni, G. and Natta, G, The Crystal Structure of Benzene and its Relation 

to that of Thiophene II, Rendiconti accad. Lincei 11, 1058. 
49a. Basse, W. Dependence of the Width and Intensity of Debye Lines and 

Rings on the Dimensions of the X-ray Source, of the Preparation and of the 
Camera, Z. Physik 66, 286. 
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Year 1930 
69a. Debye, P. Interferometric Determination of the Structure of Individual 

Molecules, Z. Elektrocliern. 36, 612. 
72a. Dehlinger, U. X-ray Investigation of the System Cadmium-Magnesium, 

Z. anorg. Chem. 194, 223. 
74a. Desmaroux and Mathieu. X-ray Study of the Gelatinization of Nitro¬ 

cellulose, Compt. rend. 191, 786. 
97a. Friauf, J. B. The Application of X-rays to the Study of Metals, Rev. Sci. 

Instruments 1, 361. 
105a. Gossner, B. Eudialyte, Centr. Mineral. Geol. 1930A, 449. 105b. Boleite, 

Pseudoboleite and Cumengeite, Z. Krist. 75, 365. 
mb. Gossner, B. and Mussgnug, F. Alstonite and Milarite—a Contribution to 

the Study of Complex Crystals, Centr. Mirwral. Geol. 1930A, 220. 111c. Baryto- 
calcite and its Structural Relations to Other Materials, ibid. 1930A, 321. 11 Id. 
Crystallographic Relationships between Epidote and Zoisite, ibid. 1930A, 369. 

116a. Hagg, G. Ciystal Structure of the Compound FcaB, Z. physik. Chem. 
IIB, 152. 

119a. Halla, F. and Mehl, E. Fiber Structure of Plastic Sulfur, Sitzung Akad. 
TFm. Wien. Math.-naiurw. Kl. 15 Mai 1930, Akad. Anzeiger No. 13. 

122a. Hassel, O. and Kringstad, H. The Structure of the Cyclohexane Molecule, 
Tids. Kcmi Bergvaesen 10, 128. 

154a. Jaeger, F. M. Natural and Artificial Ultramarines, Bull. soc. frang. min. 
53, 183. 

179a. Krishnamurti, P, Studies in X-ray Diffraction II. Some Colloidal Solu¬ 
tions and Liquid Mixtures, Indiein J. Physics 5, 489. 179b. III. Some Aromatic 
Hydrocarbons in the Solid and Liquid States, ibid. 5, 543. 

184a. Laves, F. Elementary Regions, Z. Krist. 76, 277. 
191a. McFarlan, R. L. X-ray Study of Molecular Orientation in the Kerr Effect, 

Phys. Rev. 35, 211. 
193a. Machatschki, F. The General Formula of Vesuvianite and its Relation 

to Garnet, Centr. Mineral. Geol. 1930A, 284. 193b. The Formula of Eucolite, ibid. 
1930A, 360. 193c. Chemistry of Crystals and Silicates, Forschungen u. Fortschritte 
1930, 418. 

194a. Mahadevan, C. X-ray Study of Vitrains, Indian J. Physics 5, 525. 
197a. Mark, H. The Use of X-rays in the Study of Polysaccharides and their 

Derivatives, Dixieme Conjerence de VVnion Internationale de Chimie {Liege lS-21 
Septembre 1930). Rapport presente a la Sessnlon Scieniifique, p. 175. 

218a. Natta, G. Structure of Silicon Tetrafluoride, Gazz. chim. ital. 60, 911. 
220a. Natta, G. and Nasini, A. The Structure of the Inert Gases I. Xenon, 

Rendiconti accad. Lincei 11, 1009. 
225a. Niggli, P. Stereochemistry of Crystal Compounds IV. Interatomic Dis¬ 

tances in Crystals, Z. Krist. 76, 235. 
234a. Onorato, E. New application of the Laue Method, Neues Jahrb. Mineral. 

Geol., Rejerate I, 168 (1932). 

237a. Osawa, A. Effect of Absorbed Hydrogen on the Lattice Constant of 
Palladium-Silver Alloys, Kinzoku-'uo-Kenkyu {J. Study of Metals) 7, 243. 

246a. Passerini, L. Solid Solutions, Isomorphism and Symmorphism of the 
Oxides of Bivalent Metals III. The Systems: MnO-CdO; MnO-MgO, Gazz. chim. 
ital. 60, 535. 246b. Solid Solutions, Isomorphism and Symmorphism of the Oxides 
of Trivalent Metals. The Systems: ALOa-CraO,; ALOa-FeaOa; CrvOa-FeaOa, ibid. 60, 
644. 246c. Spinels III. The Titanates of Cobalt and of Zinc, ibid. 60, 957. 

247a. Pastorello, S. Thermal Analysis of the System: Lithium-Copper, Gazz. 
chim. ital. 60, 988. 

259a. Pauling, L. The Determination of Crystal Structure by X-rays, Ann. 
Survey of Amer. Chem. 5, 118 (1929-30). 

264a. Polansky, V. S. Literature on the Use of the X-ray II, Heat Treating 
and Forging 16, 1011. 

287a. Sebmid, E. and Wassermann, G. X-ray Studies on the Tempering Problem 
I, Metallwirtschaft 9, 421. 287b. The Texture of Drawn Magnesium and Zinc Wires, 
Mitt. deut. MaterialprufuTigsanstalt Sonderheft 10, 87. 

290a. Seemann, H. Optics of X-ray Reflection from Crystals V. Wide Angle 
Diagrams, Ann. Physik 7, 633. 

304a. Stewart, G. W. Two Different Types of Association of Alcohol Molecules 
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Year 1930 
in the Liquid State, Phys. Rev. 35, 296. 304b. Effect of Electric Field upon X-ray 
Diffraction Pattern of a Liquid, ibid. 36, 1413. 

324a. Trillat, J. J. The Constitution of the Ordinaiy and Film Forms of Cellulose 
Nitrates and Acetates, J. phys. radium 1, 340. 324b. Phenomena of the Transforma¬ 
tions of the Space Lattice of Nitrocellulose. Their Generality in Cellulose Com¬ 
pounds, Compt. rend. 191, 1441. 

340a. Wever, F. and Mdller, H. The Crystal Structure of Iron Silicide, FeSi, 
Z. Krisi. 75, 362. 

351a. Wyart, J. The Dehydration of Heulandite Studied by Means of X-rays, 
Compt. rend. 191, 1343. 

368. Adati, K. and Miyaki, K. X-ray Intensimeter, Electro-Tech. Lab. Tokyo 
Circ. No. 70. 

369. Adinolfi, E. The Lattice Distance and the Reflecting Power for X-rays of 
Bismuth Relative to the Cleavage Planes, Rend, accad. sci. Napoli 36, 69. 

370. Alcacer, J. N. Cold Working and Annealing of a-Brass, Armies soc. espan. 
jis. qmm. 28, 1420. 

371. Alsen, N. Crystal Structure of Covellite (CuS) and Copper Glance (CuaS), 
Geol. Fbren. Fork. 53, 111 (1931). 

372. Andress, K. and Reinhardt, L. Swelling of Cellulose in Perchloric Acid, 
Z. physik. Chem. 151A, 425. 

373. Barrett, C. S. X-ray Fiber Structure of Alloys Containing Precipitated 
Crystals, Phy.s. Rev. 35, 1425. 

374. Baumgaertel, K. Investigations on the Influence of Covered Welding 
Electrodes on the Mechanical Properties of the Wolds, Forschungmrbeiten Geb. 
Ingereicurm. No, 336; Metals and Alloys 2, Absir. 70. 

375. Bergquist, O. The Grating Constant of Quartz, Z. Physik 66, 494. 
376. Blake, F. C. An Interesting Case of a Unit Lattice Made up of Inter- 

l)cnetrating Lattices, Phys. Rev. 35, 660. 
377. Bouchonnet, Jacquet and Mathieu. Action of Acids on Cellulose, Bull. soc. 

chim. France 47, 1265. 
378. Cardoso, G. M, Modern X-ray Methods Applied to the Determination of 

the Crystal Structure of Epsoinite, Trabajos del Museo Nac. de Ciencias Nat., Ser. 
Geol. No. 37. 

379. Chikashige, M. and Yamamoto, T. The Crystal Structures of the Com¬ 
pounds formed in the Antimony-Cadmium System, Anniv. Vol. Dedicated to Masumi 
Chikashige {Kyoto Imp. Univ.) 1930, 195. 

380. Claus, W. D. Temperature Effect in Diffuse Scattering of X-rays from 
Rock Salt, Phys. Rev. 35, 1427, 

381. Clouse, J. H. The Crystal Structure of Calcium Chromate, Z. Krist. 76, 285. 
382. Debiflska, Z. The Crystalline Structure of Cathodic Deposits, Bull, intern, 

acad. polonaise 1930A, 460. 
383. Duprd la Tour, F. The Polymorphism of the Saturated Diacids of the 

Aliphatic Series as a Function of Temperature, Compt. rend. 191, 1348. 
384. Edwards, R. L. and Stewart, G. W. Dependence of Viscosity in Liquids 

upon the Molecular Space Arrangement as Shown by X-ray Diffraction, Phys. Rev. 
35, 291. 

385. Erdmannsddrffer, 0. H. Halloysite from Elbingerode [Harz], Chem. Erde 
5, 96. 

386. Fermi, E. The Calculation of the Spectra of Ions, Mem. accad. Italia, Cl. 
sci. fis. mat. nat. 1, No. 2. 

387. Ferrari, A. The Structure of Matter in the Solid State, Scientia, Dec. 
1930, p. 131. 

388. Friauf, J. B. and Gensamer, M. Crystal Structure of the Alloys of Iron 
and Manganese, Mining Met. Investig. V. S. Bur. Mines, Carnegie Inst. Tech., 
Mining Met. Advisory Boards 4lh Open Meeting of the Met. Board Oct. 17, 1930. 

389. Frost, A. V. X-ray Study of the Crystalline Structure of Violet Phos¬ 
phorus, J. Russ. Phys.-Chem. Soc. 62, Chem. Pi. 2235. 

390. Fujiwara, T, Spectral Lines Obtained by the Method of Convergent X-rayTS, 
Mem. Coll. Sci. Kyoto Imp. Univ. 13A, 303. 

391. V. Gaertner, H. R. The Crystal Structure of Loparite and Pyrochlore, 
Neues Jahrh. Mineral. Geol. Beilage-Bd. 6lA, 1. 

392. Gerngross, 0., Triangi, 6. and Koeppe, P. Thermal Disaggregation of 
Gelatin (X-ray Study of its Degradation), Ber. 63B, 1603. 
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Year 1930 
393. V. Gdler and Sachs, G. The Refining of an Aluminum Alloy as Seen in the 

X-ray Photograph, Mitt. deut. Maierialpnijungsanstalt Sonderhejt 10, 33. 394. 
Rolling and Recrystallization Structure of Regularly Surface-centered Metals III, 
IV, V, ibid. Sonderhejt 10, 90, 94, 98. 395. Tensile Tests on Crystals of Copper and 
o-Brass, ibid. Sonderhejt 10, 108. 

396. Gottfried, C. X-ray Investigations of Liquids and Glasses, Glastech. Ber. 
8, 401. 

397. Grebe, L. Determination of Crystallite by Means of X-rays, Z. tech. 
Physik 11, 428. 

398. Halla, F. X-ray Distinctions between Magnesite and Dolomite, Siizungsber. 
Akad. Wien, Math.-naturw. Kl. Abt. lib, 139, 683; Monaishejte C/icm. 57, 1. 

399. Haraldsen, H. The Thermal Transformation of Talc, Neues Jahrb. Mineral. 
Geol. Beilage-Bd. 61 A, 139. 

400. Heinz, H. Origin, Weathering and Artificial Coloring of Agate, Chem. 
Erde 4, 501. 

401. Hengstenberg, J. and Kuhn, R. The Cp'stal Structure of the Diphenyl- 
polyenes, Z. Krist. 75, 301. 402. A Determination of the Molecular Weight of 
Methylbixin by Means of X-rays, ibid. 76, 174. 

404. Hertel, E. Addition Centers as Coordination Centers. The Crystal Structure 
of Veronal, Z. physik. Chem. llB, 279. 

405. Hertel, E. and Romer, G. H. The Structure of Quinoid Compounds and 
of a Molecular Compound of the Quinhydrone Type, Z. physik. Chem. llB, 90. 

406. Herzog, R. O. and Kratky, O. Geometric System of Molecules Having 
Periodicity of Building Groups, Naturiviss. 18, 732. 

407. Hirata, H., Komatsubara, H. and Tanaka, Y. The AiTangement of the 
Microcrystals in White Tin Deposited by Electrolysis, Anniv. Vol. Dedicated to 
Masumi Chikashige (Kyoto Imp. Vniv.) 1930, 261. 

408. Honda, K. and Kokubo, S. Age-hardening Mechanism in Aluminum Copper 
Alloys, Congr. intern. Mines, met. geol. appliquee. Sect. Met. 6th session, Liege, 
June 1930, 621; Metals and Alloys 3, Abstr. 42. 

409. Katz, J. R. and Selman, J. Influence of the Form and Polarity of Molecules 
on the X-ray Spectrum of Liquids III. The Appearance of Two Amorphous Rings 
in Substances Whose Molecules Are Probably Disk-shaped, Z. Physik 66, 834. 

410. Katz, J. R., Derksen, J. C., Kramers, C. A., Hess, K. and Trogus, C., 
Structure of Celluloid and Nitrocellulose and the Gelatinizing Medium of Nitro¬ 
cellulose as a Swelling Medium II. X-ray Spectrograms of Camphor Celluloid with 
Varying Camphor Content, Z. physik. Chem. 15lA, 145. 

411 Katz, J. R., Derksen, J. C., Hess, K. and Trogus, C. Stnicture of Celluloid 
and Nitrocellulose and the Gelatinizing Medium of Nitrocellulose as a Swelling 
Medium III. Celluloids with Other Cyclic Ketones as Jelling Media, Z. physik. 
Chem. 151 A, 163. 412. IV. Acid Amides and Esiers as Jelling Media, ibid. 151 A, 172. 

413. Kerr, P. F. Kaolinite from a Brooklyn Subway Tunnel, Am. Mineral. 
15, 144. 

414. Kidani, Y. Crystallographic Investigation of Some Mechanical Properties 
of Metals I, J. Faculty Eng. Tokyo Imp. Univ. 19, 1. 415. II, ibid. 19, 7. 

416. Korsunskii, M. Diffraction of X-rays in Liquids, Uspekhi Fiz. Nauk 10, 
719. 

417. Kratky, O. An X-ray Goniometer for Research on Polycrystals, Z. Krist. 
72, 529. 418. X-ray Examination of Microscopic Crystals I, ibid. 73, 567. 419. II. 
The Micro Convergence Method, ibid. 76, 261. 

420. Lennard-Jones, J. E. The Dependence of Crystal Spacing on Crystal Size, 
Z. Krist, 75, 215. 

421. Leonhardt, J. The X-ray Method of Investigating Structure and Texture 
and its Application to Potassium-salt Deposits, together with a Report on the 
Structure of Camallite, Kali 24, 226, 245, 264, 277. 

422. Mark, H. and Meyer, K. H. Construction of the Crystalline Part of Cel¬ 
lulose II, Cellulosechemie 11, 91. 

423. Mauguin, C. The Unit Cell of Chlorite, Bull soc. Jrang. mineral 53, 279. 
424. McLennan, J. C. and McKay, R. W. Crystal Structure of Uranium, Trans. 

Roy. Soc. Can. 24, Sect. 3, 1. 425. Crystal Structure of Metallic Lanthanum, ibid. 
24, Sect. 3, 33, 

426. Mehmel, M. The Structure of Apatite I, Z. Krist. 75, 323. 
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Year 1930 
427. Miles, F. D. and Craik, J. The Structure of Nitrated Cellulose II. The 

X-ray Examination of Nitroramie, J. Phys. Chem. 34, 2607. 
428. Nasini, A. and Natta, G. The Crystal Structure of the Inert Gases II. 

Krypton, Rendiconti accad. Lincei 12, 141. 
429. Natta, G. and Casazza, E. The Structure of Hydrogen Phosphide and of 

Hydrogen Arsenide, Gazz. chim. ital. 60, 851. 
430. Nix, F. C. and Schmid, E. The Casting Texture of Metals and Alloys, 

Mitt. deut. Materialpriifungsanstalt Sonderheft 10, 79. 
431. Noll, W. Nontronite, Chcm. Erde 5, 373. 
432. Nusbaum, C. Radial-asterism in Multi-crystalline Materials, Phys. Rev. 

35, 1426. 
433. Parravano, N. Blanc’s Alumina, Mem. accad. Italia, Cl. sci. fis. mat. nat. 

1, Chim. No. 1. 
434. Parravano, N. and Caglioti, V. Investigation of the System: Bismuth- 

Selenium, Gazz. chim. ital. 60, 923. 
435. Parravano, N. and Montoro, V. Alloys of Zinc and Manganese, Met. ital. 

22, 1043. 
436. Pesce, B. X-ray Investigations of Potassium Fluoborate., Gazz. chim. ital. 

60, 936. 
437. Raaz, F. The Crystal Structure of Gehlenite, Akad. Anzeiger Wien No. 15, 

136; No, 18, 203; Neues Jahrh. Mineral. Geol. 1931, 1, 190. 438. The Fine Structure 
of Gehlenite. A Contribution to the Knowledge of Melilite, Sitzungsber. Akad. 
IFm. Wien Abt. /, 139, 645. 

439. Roberts, O. L. X-ray Study of Very Pure Iron, Phys. Rev. 35, 1426. 
440. Sakisaka, Y. Reflection of Monochromatic X-rays from Some Crystals, 

Proc. Phys.-Math. Soc. Japan Srd Ser. 12, 189. 
441. Scherrer, P. and Staub, H, X-ray Investigation of the Coagulation Proc¬ 

ess of Colloidal Gold, Helv. Phys. Acta 3, 457. 
442. Schachtschabel, P. Dehydration and Rehydration of Kaolin, Chem. Erde 

4, 395. 
443. Schoep, A. Stainierite and a New Deposit of This Mineral, Ann. serv. mines 

comite special Katanga, Brmsels 1, 55; Rev. geol. 11, 499. 
444. Schoep, A. and Cuvelier, V. Stainierite (Cobaltic Hydroxide), a New 

Mineral, Bull. soc. belg. geol. pal. hydrol. 39, 74. 
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Boracite, MgaClBrOu, (high), 99 
Boric Acid, H3BO3, 54 
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Calcite. See Calcium Carbonate 
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(Cahaum Boride, CaBe, 39 
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Calcium Bromide Hexammoniate, 
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Cal(‘iuin Carbonate, CaCOa, 54 
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Calcium Sulfate Urea, 

CaS04*C0(NH2)2, 131 
Cancrinite, 
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Carbon Dioxide, CO2, 24 
Carbon Monoxide, /8-CO, 16 

Carbon Oxysulfido, COS, 24 
Carbon Tetraiodide, CI4, 39 
Carbonato Tetrammine Cobalti-Perchlor- 

ate, fCo 

Carbonato Tetrammine Cobalti-Sulfate 

Trihydrate, [Co (NH’)ilS04-3H20, 86 
«-Carnegieite, NaAlSi04, 108 
CdLi, 16 
3CdS04*8H20, 86 
CdSb, 16 
CdaSba, 36 
CeMga, 38 
CePbs, 38 
CeSns, 38 
Cellulose, (C6Hio06)o, 142 
Cellulose Hydrate, 142 
Cellulose Perchlorate, 

2C6H10O6.HCIO4, 142 
Celsian, 128 
Cementite. See Iron Carbide 
Cerium, a-Ce, 9 
Cerium Boride, CeBe, 39 
Cerussite. See Lead Carbonate 
Cesium Acid Tartrate, CSHC4H4O6, 131 
Cesium Aurous Auric Chloride, 

Cs2Au-^Au+++Cl6, 78 
Cesium Chloride, CsCl(low), 16 
Cesium Chloride, CsCl (high), 16 
Cesium Chloroplatinate, CsaPtCle, 78 
Cesium Chloroplumbate, Cs2PbCl6, 78 
Cesium Chloroselenite, CscSeCIe, 78 
Cesium Chlorostannate, Cs2Sn(5l6, 78 
Cesium Chlorotellurite, Cs2TeCl6, 78 
Cesium Chlorotitanate, Cs2TiCl6, 78 
Cesium Chlorozirconate, Cs2ZrCl6, 78 
Cesium Cobaltinifcrite, (Js3Co(N02)6, 78 
Cesium Cyanide, CsCN, 16 
Cesium Dichloroiodide, CsCbl, 42 
Cesium Dithionate, CS2S2O6, 54 
Cesium Ferricyanide, Cs3Fe(CN)6, 78 
Cesium Fluophosphate, CsPFe, 78 
Cesium Hydrosulnde, CsHS, 16 
Cesium Iridium Nitrite, Cs3lr(N02)6, 78 
Cesium Nitrate, CsNOs, 54 
Cesium Osmiamate, CsOsNOs, 64 
Cesium Perrhenate, CsRe04, 64 
Cesium Persulfate, CS2S2O8, 64 
Cesium Rhodium Nitrite, Cs3Rh(N02)8, 78 
Cesium Silver Auric Chloride, 

Cs2AgAuCl6, 78 
Chabazite, CaAl2Si40i2 • 6H2O, 108 
Chalcopyrite, CuFeS2, 41 
Chileite, 74 
d-Chitosamine Hydrochloride, 

CeHnOfiNCl, 142 
Chlorites, 108 
Chlor-X-Apatite, 

Caio(Cl,X)2(^P04)6, 69 
Choleic Acid 159 
Cholesteryl Bromide, 162 
Cholesteryl Chloride, 162 
Cholesteryl Salicylate, C^HsoO*, 162 
Chromite, (Fe,Mg)Cr204, 65 
Chromium, a-Cr^ 9 
Chromium Carbide, CriCj, 36 
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Chromium Carbide, Cr4C, 39 
Chromium Chloride Hexahydrate, 

CrCli -eHjO, 84 
Chromium Oxide, CrOs, 38 
Chromium Tribromide, CrBrj, 38 
Chromium Trioxide, Cr^Oi, 36 
Chrysene, CigH^, 152 
Clinozoisite, 128 
C04SJ, 40 
Cobalt, /3-Co, 9 
Cobalt Sulfate, C0SO4, 64 
Cobalt Titanate, Co2Ti04, 64 
Cobaltic Fluoride, Coft, 38 
Cobalti-Fluoborate Haxammoniate, 

[Co-6NH,](BF4)i,«4 
Cobalti-Fluophosphate Hexammoniate, 

rCo-6NH8](PF,),,84 
Cobalti-Perchlorate Hexammoniate, 

rCo-6NH,](C104)8,84 
Cobdtous Aluminate, C0AI2O4, 64 
Cobaltous Ammonium Sulfate Hexahy¬ 

drate, CoS04-(NH4)2S04*6H20, 84 
Cobaltous Bromide Hexammoniate, 

[Co-6NH3]Br2, 84 
Cobaltous Carbonate, C0CO3, 54 
Cobaltous Chloride, C0CI2, 24 
Cobaltous Chloride Hexammoniate, 

CCo'ONHalCb, 84 
Cobaltous Fluoborate Hexammoniate, 

rCo-6NH3](BF4)2, 84 
Cobmtous Fluophosphate Hexammoniate, 

rCo-6NH3](PF6)2, 84 
Cobaltous Fluosulfate Hexammoniate, 

CCo-6NH3](S08F)2, 84 
Cobaltous Iodide Hexamethylamine, 

rCo-6(NH2-CH3)]l2, 84 
Cobaltous Iodide Hexammoniate, 

rCo-6NH3]l2, 84 
Cobaltous Perchlorate Hexammoniate, 

rCo-6NH3](C104)2, 84 
Cobaltous Sulfide, CoS, 16 
Cobaltous Titanate, CoTiOa, 54 
Columbiurm Cb, 9 
Colusite, (Cu,Fe,Mo,Sn)4(S,As,Te)3-4, 16 
Cooperite. See Platinum Sulfide 
Copper, Cu, 9 
Copper Aluminate, CUAI2O4, 64 
Copper Antimony Sulfide, CuSbS2, 41 
Copper Bismuth Sulfide, CuBiS2, 40 
Copper Ferrite, CuFe204, (quenched), 64 
Copper Ferrite, CuFe204, (annealed), 65 
Copper Formate Dihydrate, 

Cu(HC02)2-2H20, 131 
Copper Formate Tetrahydrate, 

Cu(HC02)2*4H2q, 131 
Copper Glance. See Cuprous Sulfide 
Copper Sulfate Pentahydrate, 

CuS04*5H20, 83 
Copper Vanadium Sulfid^ CU8VS4, 65 
Cordylite, BaC08'2RFC08, 54 
Corundum. See a-Aluminum Trioxide 
Covellite. See Cupric Sulfide 
CiiCif 40 
o-Cristobalite. See Silicon Dioxide 
/^Cristobalite. See Silicon Dioxide 
Cryolite, Na^AlFe, 79 
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CsCg (brown), 40 
CsCie (black), 40 
CugCdg, 40 
CuaMg, 24 
CuisSb, 40 
CusZns, 40 
Cumengeite, 99 
Cupric Fluoride, CuF2, 24 
Cupric Oxide, CuO, 16 
Cupric Sulfide, CuS, 16 
Cuprite. See Cuprous Oxide 
Cui)rodescloizite, 74 
Cuprous Ferrite, Cu2Fe204, 41 
Cuprous Fluoride, CuF, 16 
Cuprous Glutathione, 131 
Cuprous Mercuric Iodide, a-Cii2Hgl4, 65 
Cuprous Mercuric Iodide, /3-Cu2Hgl4, 65 
Cuprous Oxide, CU2O, 24 
Cuprous Sulfide, CU2S, 24 
Cyanite, AbSiOs, 108 
p-Cyano-o-Nitro-p'-Methoxystilbene, 

C6H3(CN)(N02)CII-CHC3H4(0CH,) 
(orange form), 149 

p-Cyano-o-Nitro-p'-Methoxystilbene, 
C6H3(CN) (N02)CH-CHC6H4(0CH8) 
(metastable yellow form), 149 

Cyanuric Triazide, C3N3(Ns)8, 159 
Cyclododecane, C12H24, 139 
Qf-Cyclohexandiol 1, 2, CcHio(OH)2, 139 
j8-Cyclohexandiol 1, 4, C6Hio(OH)2, 139 
7-Cyclohexandiol 1, 2, C6Hio(OH)2, 139 
^-Cyclohexandiol Diacetate 1, 4, 

C6Hio(CH3C02)2, 139 
Cyclohexane, C6H12, 139 
Cyclooctacosane 1, 15 dion, 

C28H62O2, 140 
Cyclotetracosane 1, 13 dion, 

C24H44O2, 140 
1-Cystine, COOHCH(NH2)CH2S = 

SCH2CH(NH2)C00H, 137 

Dechinite, 74 
Descloizite, PbZn(OH)V04, 66 
3, 3'-Diaminodimesityl, 152 
Diamminoplatinic Tetrachloride, 

a-Pt(NH8)2Cl4, 82 
Diamminoplatinic Tetrachloride, 

^-Pt(NH3)2Cl4, 82 
Dianhydrogitoxigenin, C28H2tt02(0H), 163 
Dianthracene, (Ci4Hio)2, 152 
Diaspore. See Aluminum Trioxide Mono- 

hydrate 
1, 2, 5, 6 Dibenzanthracene, 152 
T, 7'-Dibenzocarbazol^ 152 
Dibenzoyl Disulfide, (C6H6C0S)2, 150 
Dibenzyl, CeHgCHj-CHaCgHs, 148 
Dibenzyl Diselenide, (CfiH6CH2Se)2, 150 
Dibenzyl Disulfide, (C(iH6CH2S)2, 150 
Dibenzylidenebenzidine, 148 
p-Dibromobenzene, C«H4Br2, 146 
1, 4 Dibromocyclohexane, C«HioBr2,139 
^Dichlorobenzene, CeHiCb, 146 
Dickite, Al2Si206(0H)4, 108 
5, 5 Diethyl Barbituric Acid, 

CaHigNgOs, 160 
Digitoxigenin, C28H8202(0H)2, 163 



INDEX OF SUBSTANCES 233 

a-Diglycylglycine, NHaCHaCONHCH*- 
CONHCH2COOH, 137 

/S-Didycylglycine, NHaCHjCONHCHa- 
CONHCH2COOH, 137 

Diglycylglycine Dihydrate, NH2CH*- 
CONHCHaCONHCHjCOOH • 2H2O, 
137 

Digoxigenin, C28H3i02(0H)3, 163 
a-Dihydroergosterol, Ethyl Alcoholate, 

C27H430H,C2H30H, 162 
m-Diiodobenzene, C6H4I2, 146 
o-Diiodobenzene, C6II4I2, 146 
p-Diiodobenzene, C6H4I2, 146 
1, 4 Diiodocyclohexane, C6H10I2, 139 
Diketopiperazine, 

/NHCH2\ 
0=C< >C=0, 159 

Dimesityl, 152 
Dimethyl Ammonium Chlorostannate, 

CNH2(CH3)2]2SnCl6, 133 
Dimethyl Thallium Bromide, 

Tl(CH3)2Br, 132 
Dimethyl Thallium Chloride, 

T1(CH3)2C1, 132 
Dimethyl Thallium Iodide, Tl(CH3)2l, 132 
2, 7 Dinitroanthraquinone, 

C,4H6(N02)202, 151 
2, 7 Dinitroanthraquinone Fluorene, 

CHHe(N02)202, (CeH4)2CH2, 151 
m-Dinitrobenzene, C6H4(N02)2, 146 
1, 2, 6 Dinitrophenol, C3H30H(N02)2, 147 
trans-Dinitrotetrammine Cobalti- 

Chloride, 1, 83 

Diphenic Acid, (COOHC,H4)2, 150 
Diphenyl, 150 
p>Diphenylbenzene, Cells(C6H4)C«H6, 152 
Diphenylbutadiene, 

C6li6CH = {CH)2=CHCeH6, 149 
Diphenyldecapentaene, 

CeHs(CH=CH)6C6H6, 149 
Diphenyl Diselenide, (C6H6Se)2, 149 
Diphenyl Disulfide, (C6H6S)2, 149 
Diphenyldodecahexaene, 

Cefl6(CH=CH)eC6Hs, 149 
Diphenylhexatriene, 

C6HsCH = (CH-CH)2«CHCeHs, 149 
Diphenyl Nitrosoamine, 

CeHsN-NO-CeHe, 150 
Diphenyloctatetraene, 

CeH6(CH=CH)4CeHe, 149 
Diphenyltetradecaheptaene, 

C6H5(CH=CH)7CeHs, 149 
Disodium Calcium Orthosilicate, 

Na2CaSi04, 111 
Dodecanol, C12H26OH, 138 
Dolomite. See Calcium Magnesium Car- 

honate 
Dulcitol, CeHnOe, 140 
Durene, 1, 2, 4, 5 C6H2(CH8)4, 147 

Edingtonite, BaaAl4Sie02o-81120, 108 
Emplectite. See Copper Bismuth Sulfide 
Enargite, CusAsSe, 64 
Enstatite (var. Bronzite), 108 

1-Ephedrine Hydrobromide, 
C,oHi60N,HBr, 160 

Ephedrine Hydrobromide (racemic), 
CioHi60N,HBr, 160 

1-Ephedrine Hydrochloride, 
C,oH,60N,HC1, 160 

Ephedrine Hydrochloride (racemic), 
CioHi60N,HC1, 160 

1-Ephedrine Hydroiodide, 
C,oHieON,HI, 160 

Ephedrine Hydroiodide (racemic), 
C,oH,60N,HL 160 

Epididymite, NajpSijOy(OH), 108 
Epidote, (Si04)iA5^(Al,Fe)0H, 108 
Epsomite. Sulfate Heptor 

hydrate “ ? 
Erbium Boride, ; 
Ergosterol, CaTHttOH, 162 
Ethyl Anisal p-Amino Cinnamate, 

CigHieNOe, 148 
Euclase, HBeAlSiOs, 108 
Eudialyte, 108 
Eulytite, BbSisOw, 108 
Eusynchite, 74 

FeSi, 16 
FesWa (e-phase), 36 
Feldspars, 108, 128 
Ferric Chloride, FeCU, 38 
Ferric Fluoride, FeFs, 38 
Ferric Oxide, FeaOi, 36 
Ferric Oxide, FeaOs, (magnetic), 36 
Ferric Oxide Monohydrate, FeaOa • H2O, 82 
Ferric Oxychloride, FeOCl, 24 
Ferrous Aluminate, FeAl204, 65 
Ferrous Ammonium Sulfate Hexahydrate, 

FeS04 • (NH4)2S04 • 6H2O, 84 
Ferrous Bromide Hexammoniate, 

FeBrf6NH8, 84 
Ferrous Carbonate, FeCOs, 54 
Ferrous Chloride Hexammoniate, 

FeCl2-6NH3, 84 
Ferrous Chromite, FeCr204, 65 
Ferrous Ferric Oxide, Fe804, 65 
Ferrous Fluoborate Hexammoniate, 

Fe(BF4)2-6NH8, 84 
Ferro\is Fluosulfate Hexammoniate, 

Fe(S08F)2-6NH8, 84 
Ferrous Iodide Hexammoniate, 

Fel2-6NH3, 84 
Ferrous Oxide, FeO, 16 
Ferrous Perchlorate Hexammoniate, 

Fe(C104)2-6NH3, 84 
Ferrous Sulfide, FeS, 16 
Ferrous Titanate, Fe2Ti04, 65 
Ferrous Vanadium Spinel, FeV204, 65 
Fluorite, See Calcium Fluoride 
a-Follicular Hormone, (unstable rhombic 

form), C18H22O2, 162 ^ 
a-Follicular Hormone, (stable rhombic 

form), C18H22O2, 162 
a-Follicular Hormone Monohydrate, 

C18H24O8, 162 
FulleFs Earth, Al208-4Si02-H,0, 109 
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Gadolinium Boride, GdBt, 39 
Gahnite. See Zinc Aluminate 
/3-a-Galactose, C6H12O6, 140 
Gallium, Ga, 10 
Gallium Zincate, Ga2Zn04, 65 
Garnet, 109 
GdPMoi204o-30H20, 86 
Gehlenite (synthetic), 109 
Germanium Dioxide, Ge02, 24 
Germanous Sulfide, GeS, 17 
Gibbsite. See Aluminujn Trioxide Trihy- 

drate 
Gitoxigenin, C23H3i02(0H)3, 163 
/3-d-Glucosan, CeHioOe, 141 
d-Glucose, CeHiaOe, 140 
Glucose Pentaacetate, 142 
1-Glutamic Acid, 

COOH • CH2 • CH2CH(NH2)C00H, 
137 

a-Glutaric Acid, C00H(CIT2)3C00H, 138 
^-Glutaric AcidL COOH(CH2)3COOH, 138 
a-Glycine, CH2NH2COOH, 137 
^-Glycine, CH2NH2COOH, 137 
a-Glycylglycine, 

CH2NH2CONHCH2COOH, 137 
/3-Glycylglycine, 

CH2NH2CONHCH2COOH, 137 
7-Glycylglycine, 

CH2NII2CONHCII2COOH, 137 
Goethite. See Ferric Oxide Monohydrate 
Gold, Au, 9 
Graphite, C, 9 
Guanidine d-Tartrate Hydrate, 

[C(NH2)2NH]2(C4H606)«UH20, 138 
Guanidinium Chloride, (NH2)2CNH.HC1, 

136 
Gypsum. See Calcium Sulfate Dihydrate 

Hafnium Tetrafluoride, HfF4, 39 
Hambergite, Be2B08(0H), 99 
Hanksite, 9Na2S04-2Na2C08 KCl, 99 
Hauerite. See Manganese Disulfide 
Haiiynite,Na8Si6Al6024(l-2, SO4), 109 
Hematite. See Ferric Oxide 
Hemimorphite, Zn4(0H)2Si207 • H2O, 109 
Herc^ite. See Ferrous Aluminate 
Hessite. See Silver Telluride 
Heulandite, 109 
Hexabromobutylene, 

CHBrsBrC^CBrCHBrs, 136 
Hexachlorethane, C2Ck 136 
Hexachlorobenzene, CeCb, 147 
Hexachlorodiphenyl, (C6H2Cla)2, 150 
Hexadecanol, CieHsaOH, 138 
Hexamethylenetetramine, C6H12N4, 140 
Hexamethylethane, C2(CHs)6, 136 
Hexaminobenzen^ C6(NH2)6, 147 
Hexuronic Acid, CeHsOe, 159 
HgLi, 17 
Hiortdahlite, 128 
Hornblendes, 109 
Hyalophane, 128 
HydrarmUite. See Aluminum Trioxide 

Trikydrate 
Hydrobromic Acid, HBr (low), 17 
Hydrobromic Acid, HBr (high), 17 

Hydrochloric Acid, HCl (low), 17 
Hydrochloric Acid, PICl (high), 17 
Hydrogen Selenide, IT2Se, 25 
Hydrogen Sulfide, H3S, 25 
Hydroiodic Acid, HI, 17 
Hydroxy-Apatite, Cio(OH)2(P04)o, 69 

Ice, H2O, 25 
Ilmenite, FeTiOs, 54 
Indium, In, 10 
Indium Borate, InBOs, 54 
i-Inositol, C6H6(OH)6, 139 
1-lnositol, C6H6(0II)6, 139 
i-Inositol Dihydrate, CGH6(On)6 • 2H20,139 
Insulin, 163 
o-lodobenzoic Acid, C6lT4lCOOn, 146 
Iodoform, CHI3, 136 
Iridium, Ir, 10 
Iron, a-Fe, 9 
Iron Arsenide, FeAs2, 24 
Iron Boride, Fe2B, 24 
Iron Carbide, FoaC, 38 
Iron Phosphide, FeP2, 24 
Iron Sulfide, FeS2, 24 
Iron Tetracarbonyl, Fe(CO)4, 39 
4 IsoxazolyI-5-Isoxazolyl Ketone, 

C7H4N2O3, 360 
Ittnerite, 125 

Joaquinite, NaBa(Ti,Fe)3Si40i6, 109 

KBia, 25 
KCs (brown), 40 
KCj6 (bla(;k), 40 
KFeS2, 41 
KsNaAlFe, 78 
Kaliophilite, KAlSi04, 109 
Kalithomsonite. See Ashcroftine 
Kaolin, Al2Si205(0?I)4, 109 
Kernite, Na2B407 *41120, 83 
Ketohydroxyoestrin, 162 
Koppite, 

(Ca,Ce,Na,K)2(Cb,Fe)206(0,0H,F), 
99 

Krokoite. See Lead Chromate 
Krypton, Kr, 10 

IjaAl4, 39 
LaMgs, 38 
LaPbs, 38 
LaSna, 38 
Labradorite, 128 
(Lactone 135h C23H36O2, 163 
Langbeinite, K2Mg2 (804)3, 65 
Lanthanum, a-La, 10 
Lanthanum, ^-La, 10 
Lanthanum Borate, LaBOs, 55 
Lanthanum Boride, LaBe, 39 
Laurite. See Ruthenium Disulfide 
Lavenite, 128 
Lawsonite, Ca(Si03)2* (A102H2)2, 109 
Lead, Pb, ,10 
Lead Bromide, PbBi^ 25 
Lead Carbonate, PbCjOs, 55 
Lead Chloride, PbCb, 26 
Lead Chlorite, Pb(C108)2, 41 
Lead Chromate, PbCr04, 66 
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Lead Dioxide, Pb02, 26 
Lead Ferrite, PbFe204, 41 
Lead Fluobromide, PbFBr, 25 
Lead Fluochloride, PbFCl, 25 
Lead Fluoride, a-PbF2, 26 
Lead Fluoride, /3-PbF2, 26 
Ijead Formate, Pb(HC02)2, 131 
Lead Nickel Nitrite, Pb2Ni(N02)«, 79 
Lead Nitrate, Pb(N03)2, 55 
Lead Oxide, PbO (red), 18 
Lead Oxide, PbO (yellow), 18 
Lead Khodium Nitrite, Pb3[Rh(N02)6l, 

79 
Legranditc, Zni4(As04)90H-I2H2O, 86 
Lepidocrocite. See Ferric Oxide Monohy¬ 

drate 
Leucophanite, (Ca, Na) 2BeSi2(O, OH ,F) 7, 

109 
Lewisite, (Ca,Fe,Na)2(Sb,Ti)2(0,0H)7, 99 
LiCda, 38 
LiGa, 17 
Liln, 17 
LiTl, 17 
LiZn, 17 
Lievrite, CaFe2-^+(Fe+++0H)(Si04)2, 109 
Linncite, (Co,Ni)3S4, 64 
Lithium Ferrite, Li2Fe204, 41 
Lithium Hydride, Lill, 17 
Lithium Hydroxide, LiOH, 17 
Lithium lodate, LilOa, 55 
Lithium Iodide Trihydrate, Lil-SILO, 83 
Lithium Orthophosphate, Li3p04, 65 
Lithium Oxide, Li20, 25 
Lithium Perchlorate Trihydrate, 

LiCl04-3H20, 83 
Lithium Selenide, Li2Se, 25 
Lithium Sulfate, Li2S04, 65 
Lithium Sulfate Monohydrate, 

Li2S04*H20, 82 
Lithium Sulfide, Li^S, 25 
Lithium Telluride, Li2Te, 25 
Lollingite. See Iron Arsenide 
Loparite, (Na,Ce,Ca)(Ti,Cb)03, 55 
Lorandite. See Thallium Arsenic Sulfide 
Lumisterol, C27H4iOH, 162 
Lusakite, 

H3O • 4(Fe,Co,Ni,Mg)0 • 9(Al,Fe)2- 
Os-sHaO, no 

Magnesium, Mg, 10 
Magnesium Aluminate, MgAl204, 65 
Magnesium Ammonium Arsenate Hexahy- 

drate, MgNH4As04 • 6H2O, 85 
Magnesium Ammonium Selenate Hexahy- 

drate, MgSe04-(NH4)2Se04 *61120, 85 
Magnesium Ammonium Sulfate Hexahy- 

drate, MgS04; (NH4)2S04*6H20, 85 
Magnesium Bromide Hexahydrate, 

MgBr2*6H20, 85 
Magnesium Bromide Hexammoniate, I 

MgBr2*6NHs, 85 
Magnesium Chloride Hexahydrate, 

MgCl2‘6H20, 85 
Magnesium Chloride Hexammoniate, 

MgCla-eNHs, 85 
Magnesium Chromite, MgCr204, 65 

Magnesium Ferrite, MgFe204, 65 
Magnesium Fluoborate Hexammoniate, 

Mg(BF4)2*6NH8, 84 
Magnesium Gallium Spinel, MgGa204, 65 
Magnesium Indium Spinel, Mgln204, 66 
Magnesium Iodide, MgL, 25 
Magnesium Iodide Hexammoniate, 

Mgl2*6NH8, 85 
Magnesium Nitride, MgaNa, 36 
Magnesium Perchlorate Hexammoniate, 

Mg(C104)2*6NH3, 85 
Magnesium Phosphide, Mg3P2, 36 
Magnesium Piatinocyanide Heptahydrate, 

MgPt(CN)r7H20, 86 
Magnesium Potassium Sulfate Hexahy¬ 

drate, MgS04*K2S04'6H20, 85 
Magnesium Sulfate Heptahydrate, 

MgS04*7H20, 86 
Magnesium Thallous Sulfate Hexahydrate I MgS04*Tl2S04*6H20, 85 • 
Magnesium Titanate, MgTiA, 55 
Magnesium Titanate, Mg*T104, 66 
Magnetite. See Ferrous Ferric Oxide 
Magnus’ Green Salt, CPt(NH3)4]PtCl4, 83 
Magnus’ Red Salt, rPt(NH3)4]PtCl4, 83 
Malachite, CuCOs*Cu(OH)2, 99 
a-Malonic Acid, COOHCH2COOH, 138 
Manganese, Mn, 10 
Manganese Aluminate, MnAhOi, 66 
Manganese Chromite, MnCr204, 66 
Manganese Disulfide, MnS^ 25 
Manganese Ferrite, MnFe204, 66 
Manganese Thiochromite, MnCr2S4, 66 
Manganese Trioxide Monohydrate, 

MnA-HsO, 82 
Manganite. See Manganese Trioxide 

Monohydrate 
Manganous Bromide Hexammoniate, 

MnBr2*6NH8, 85 
Manganous Chloride Hexammoniate, 

MnCl2*6NPT3, 85 
Manganous Fluoborate Hexammoniate, 

Mn(BF4)2*6NH3, 85 
Manganous Fluosulfate Hexammoniate, 

Mn(S03F)2*6NH8, 85 
Manganous Iodide Hexammoniate, 

Mnl2 *6NH3. 85 
Manganous Oxide, MnO, 17 
Manganous Perchlorate Hexammoniate, 

Mn(C104)2*6NH3, 85 
Manganous Sulfide, MnS (red precipitate), 

17 
Manganous Sulfide, MnS (green precipi¬ 

tate, 17 
Manganous Titanate, MnTiOs, 55 
Manganous Titanate, Mn2Ti04, 66 
d-Mannitol, CeH^Oe, 140 
7-d-Mannonolactone, 141 
d-Mannose, CflHi20«, 140 
Marcasite. See Iron Sulfide m 
Matlockite. See Lead Fluochloride 
Meliphanite, 110 
MeUite, AhCwOii-lSHjO, 131 
Mercuric Bromide, HgBrs, 25 
Mercuric Chloride, HgCh, 25 
Mercuric Fluoride, HgFa, 25 
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Mercuric Iodide, HgL, 25 
Mercurous Fluoride, HgF, 17 
Mercury, Hg, 10 
Mesanthraquinone, 152 
MesoUte, NajCaaAleSieOso-SHaO, 110 

Methane, CH4, 136 
a-Methyl-l-Arabinoside, CeHiaOs, 140 
^-Methyld-Arabinoside, C6H12O6, 141 
Methyloixin, C26H3204, 159 
1-Methyl Ephedrine Hydrobromide, 

CnH,70N,HBr, 161 
Methyl Ephedrine Hydrobromide 

(racemic, 1st modOi CiiHi70N,HBr, 
161 

Methyl Ephedrine Hydrohromide 
(racemic, 2nd mod.), CuHnONjHBr, 
161 

1-Methyl Ephedrine Hydrochloride, 
C„Hi76«,HC1 161 

Methyl Ephedrine Hydrochloride 
(racemich C4iHnON,HCl, 161 

1-Methyl Ephediine Hydroiodide, 
C„Hi76n,HI, 161 

Methyl Ephedrine Hydroiodide (racemic), 
C„HnON,HI, 161 

of-Methyl-d-Glucoside, C7II14O6, 141 
/3-Methyl-d-Glucoside Hemihydrate, 

C7Hi404-4H20, 141 
Methyl-l-Inositol, C6H6(OH)6(OCH3), 139 
a-Methylmannoside, CtHuO® (furanoso 

form)., 141 
a-Methylmannoside, C7H14OR (pyranose 

form), 141 
Methyl-l-Rhamnoside, C7H14O6, 141 
Methyl Silicate, (CH3)4Si04, 132 
Methyl Urea, C0NH2(NH(:H3), 136 
a-Methylxyloside, C6H12O6, 141 
d-d-Methylxyloside, C6H12O6, 141 
Mg8As2, 36 
MgsBij, 36 
Mg2Ge, 25 
MgNia, 25 
MgNiZn, 25 
MgaPb, 25 
MgPr, 17 
Mg8SD2, 36 
Mg2SiMoi2O40*31H2O, 86 
Mg2Sn, 25 
MgTl, 17 
MgZn, 17 
MgZn2, 25 
MgZns, 39 
Miargyrite. See Silver Antimony Sulfide 
MicroHte, (Ca,Na)2(Ta,Cb)2(0,F)7,1()0 
Milarite, HKCa2Al2(Si206)6, 110 
Mimetite, PbioCl2(As04)«, 66, 69 
MoC, 17 
M02C, 25 
Molybdenum, Mo, 10 
Molybdenum Trioxide, MoOs, 38 
'y-Monoacetylmethyl-l-Rhamnoside, 

C^HjeOe, 142 
n-Monoamyl Ammonium Chloride, 

n-CjHuNH,Cl, 133 
Monomeric Butadiene Sulfone, 

C4HeSOj, 159 

Monomeric Dimethyl Butadiene Sulfone, 
CeHuWz, 160 

Monomeric Isoprene Sulfone, 
C5H8SO2, 159 

Monomethyl Ammonium Cupric Chloride, 
(NH3CH,)2CuCl4, 133 

Montmorillonite, H20*Al20s‘4Si02, 110 
Mosandrite, 128 
Mottramite, 74 
Muscovite, KAl2(AlSi8)Oio(OH)2 110 

NaBi, 17 
Nain, 18 
NaPbs, 39 
NasiPbe, 40 
NaTl, 18 
Na-W Bronze (blue), Na2(W08)6, 55 
Na-W Bronze (cubic). See Sodium Tung¬ 

state 
Nacrite, Al2Si205(0H)4, 110 
Naphthalene, CkHs, 150 
Naphthazarin, iM 
1, 2 Naphthoquinone, C10H6O2, 151 
1, 4 Naphthoquinone, C10H6O2, 151 
Narsarsukite, (Si40ii)(Ti,FeF)Na2, 110 
Natrolite, Na2Al2Si30io-2H20, 110 
NdPMoi2O40-301120, 86 
Neodymium, Nd^ 10 
Neodymium Boride, NdBe, 40 
Neodymium Carbide, NdC2, 25 
Nephelite, NaAlSi04, 110 
Ni2SiMoi2O40-31H2O, 86 
Niccolite. See Nickel Arsenide 
Nickel, a-Ni, 10 
Nickel, d-Ni, 10 
Nickel Aluminate, NiAl204, 66 
Nickel Arsenide, NiAs, 18 
Nickel Bromide, NiBr2, 25 
Nickel Bromide Hexammoniate, 

NiBr2 -6NH3, 85 
Nickel Chloride Hexammoniate, 

NiCl2-6NH8, 85 
Nickel Chromite, NiCriOi, 66 
Nickel Fluoborate Hexammoniate, 

Ni(BF4)2-6NH3, 85 
Nickel Fluophosphate Hexammoniate, 

Ni(PF4)2-6NHa, 85 
Nickel Fluosulfate Hexammoniate, 

Ni(S08F)2-6NH3, 85 
Nickel Hydroxide, Ni(OH)2, 25 
Nickel Iodide, Nila, 25 
Nickel Iodide Hexamethylamine, 

Nil2-6(NH2CH8), 85 
Nickel Iodide Hexammoniate, 

Nila-eNHs, 85 
Nickel Oxide, NiO, 18 
Nickel Perchlorate Hexammoniate, 

Ni(C104)»-6NH,, 85 
Nickel Sulfate Hexahydrate, 

NiS04'6H20, 86 
Nickel Sulfide, NiS, 18 
Nickel Titanate, NiTiOs, 55 
Niobium. See Columbium 
Nitrogen, a-Ni, 10 
Nitrogen, d-^Na^ 10 
Nitrogen Dioxide, NO*, 26 
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4 Nitro-2-Methylaininotoluene, (red form) 
147 

4 Nitro-2-Methylaininotoluene, (yellow 
form), 147 

p-Nitrostilbene, 
C«H5CH«CHC6H4(N02), 149 

Nitrous Oxide, N2O, 25 
Nordenskioldite, CaSn(603)2, 54 
Northupite, Na2Mg(C03)2-NaCl, 100 
Noaelite, Na8Al«Si«024*S04, 110 

Octadecyl Ammonium Chloride, 
C18H37NH3CI, 133 

Osmium, Os, 10 
Osmium Disulfide, OSS2, 25 
Oxalic Acid Dihydrate, 

(C00H)2*2H20, 138 
Oxy-Apatite, CaioO(P04)«, 69 
Oxygen, O2, 10 

Palladium, Pd, 10 
Palladium Trifluoride, PdFs, 39 
Palladous Fluoride, PdF2, 26 
a-Palmitic Acid, CH,(CH2)i4COOH, 138 
Parisite, CaCOa • 2RFCO3, 54 
Partschinite, 128 
Pectolite, NaHCa2(Si03)3, 110 
Pentaerythritol Tetrabromide, 

C(CH2Br)4, 136 
Pentaerythritol Tetrachloride, 

C(CH2C1)4, 136 
Pentaerythritol Tetraiodide, 

C(CH2l)4, 136 
Pepsin, 163 
d-Phenyl Alanine, 

CeH4CH2-CH(NH2)COOH, 146 
Phenylaminoacetic Acid, 

C3H3CHNH2COOH, 146 
Phosphine, PHa, 39 
Phosphomolyb^c Acid, 

H8PMoi204o-30H20, 86 
Phosphorus Triiodide, Pis, 39 
Phosphotungstic Acid Pentahydrate, 

H8PW,204o-5H20, 83 
Platinum, Pt, 11 
Platinum Arsenide, PtAs2, 26 
Platinum Sulfide, PtS, 18 
Pollucite, 

(CsAl,H4)Si20«. 110 
Polybasite, (Ag,Cu)2Sb2S4, 40 
Eu-Polyethylene Oxide, 

(CHaCHaO)*, 159 
jS-Polyoxymethylene, 159 
Potassium Acid Tartrate, 

KHC4H4O6, 131 
Potassium Barium Cobalto-Hexanitrite, 

K2BaCo(N02)6, 78 
Potassium Barium Nickel Hexanitrite, 

KaBaNi(N02)6, 78 
Potassium Brornselenite, KaSeBr®, 78 
Potassium Calcium Cobalto-Hexanitrite, 

K2CaCo(N02)e, 78 
Potassium Calcium Nickel Hexanitrite, 

K2CaNi(N02)6, 78 
Potassium Chloroplatinate, KaPtCh, 78 
Potassium Chlorostannate, KaSnCle, 70' 

Potassium Chlorotellurit^ KaTeCle, 79 
Potassium Chromate, K2Cr04, 65 
Potassium Chromcj^anide, iC8Cr(CN)«, 78 
Potassium Cobaltinitrit^ K3Co(N02)8, 78 
Potassium Columbiate, KCbO*, 54 
Potassium Cupric Chloride Dihydrate, 

K2CuCl4-2H20, 82 
Potassium Cyanide, KCN, 17 
Potassium Dithionate, KaSaOe, 55 
Potassium Ferricyanide, K8Fe(CN)8, 78 
Potassium Ferrite, K2Fe204, 41 
Potassium Fluoborate, KBF4, 65 
Potassium Fluophilsphate, KPF#, 78 
Potassium Hydrosumde, KHS (low), 17 
Potassium HydrosulMe, KHS (high). 17 
Potassium Iridium Cyanide, K8lr(CN)8,78 
Potassium Iridium Nitrit^K3lr(N02)8, 78 
Potassium Lead Chloride Hydrate, 

3(KPbCJ8)-H20 82 
Potassium Manganicyanidei^*" 

K3Mn(CN)«, 78?'-,. . T 
Potassium mekel HeximStrite, 

K4Ni(N02)«, 78 
Potassium Nitrate, KNOs, 54 
Potassium Osmiamate, KOsNOs, 65 
Potassium Osmyl Chloride, 

K2OSO2CI4, 78 
Potassium Oxide, K2O, 25 
Potassium Pentachloronitrilosmiatc, 

K2O9NCU, 78 
Potassium Perchlorate, KCIO4 (low), 65 
Potassium Permanganate, KMn04, 65 
Potassium Pyrosulfite, K2S2O6, 100 
Potassium Rhodium Nitrite, 

K3Rh(N03)6, 78 
Potassium Selenid^ KaSe, 25 
Potassium Silver Cyanide, KAg(CN)2, 41 
Potassium Strontium Cobalto-Hexani¬ 

trite, K2SrCo(N02)«, 79 
Potassium Strontium Nickel Hexanitrite, 

K2SrNi(N02)6, 79 
Potassium Sulfide, K2S, 25 
Potassium Tantalate, KTaO*, 55 
Potassium Telluride, KaTe, 25 
Potassium Thiocyanate, KCNS, 38 
Potassium Trithionate, KaSgOa, 100 
PrMg3, 39 
Praseodymium, Pr, 11 
Praseodymium Boride, PrBe, 40 
Praseodymium Carbide, PrCa, 26 
Pregnandiol, 162 
Prehnite, Ca2(Si08)i(A10H)A102H, 110 
Pseudoboleite^ 100 
d-Pseudococame-l-!^hedrine-d-Tartrate 

Monohydrate, CiiHiaOuNa-HaO, 161 
d-Pseudococaine-1- Methyl Ephedrine-d- 

Tartrate Dihydrate, 
C«H440uN2-2H20, 161 

d-Pseudoephedrine Hydrobroujude, 
CioHuON,HBr, 160 

Pseudoephedrine Hydrobromide (racemic) 
CiSisON.HBr, 161 

d^Pseudoephearine Hydrochloride, 
CioHwON,HCI, 161 

•Pfieudoephedrine Hydrochloride (racemic), 
CioHi60N,HCl, 161 
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d-Pseudoephedrine Hydroiodide, 
CioHuON,HL 161 

Pseudoephedrine Hydroiodide (racemic), 
CioHi60N,HI, 161 

Psittacinite, 74 
PtSn, 18 
Pyramidon, 160 
Pyrite. See Iron Sulfide 
Pyroaurite, Fe(OH)8 • 3Mg(OH)2 • 3H2O, 

100 
Pyrochlore, 

(Na,Ca)2(Cb,Ti)2(0,F)7, 100 
Pyromorphite, PbioCl2(P04)6, 66, 69 
Pyrophyllite, AlaSuOio(OH)2, HI 
Pyrosmalite, 

Si307(Mn,Fe)3(Mn,F^)(0H,Cl)a, 111 
Pyrrliite, 100 

a-Quartz. See Siliipn Dioxide 
Quaterphenyl, C«B{|iLC«34)2CeH6, 152 
Quebrachitol. ISk^mefn^l-lTiositol 
Quercitol, C6H7(OHf)«i 139 
Quinhydronc, CflH40a*C«H4(0H)2, 148 
p-Quinone, CeHiOa, 146 

RbCfi (brown), 40 
RbCifl (black), 40 
Rb2(CrF4 H20), 82 
Resorcinol, m-C6H4(OH)2, 146 
1-Rhamnose Monohydrate, C6Hi206*H20, 

140 
Rhenium, Re, 11 
Rhenium Trioxide, ReOa, 39 
Rhodium, a-Rh, 11 
Rhodium, /5-Rh, 11 
Rhodium Trifluoride, RhFg, 39 
Rinkite, (Si04)2C(Ti,Ce)F]Ca2Na, 111 
Rochelle Salt, 

Na00C(CH0H)2C00K-4H20, 131 
Romeite, (Ca.Na,Mn)2Sb2(0,0H,F)7, 100 
Rubidium Chloroplatinate, Rb2PtCl6, 79 
Rubidium Chloroplumbate, RbaPbCle, 79 
Rubidium Chloroselenite, Rb2SeCl6, 79 
Rubidium Chlorostannate, Rb2SnCl6, 79 
Rubidium Chlorotellurite, Rb2TeCl6, 79 
Rubidium Chlorotitanate, RbaTiCle, 79 
Rubidium Chlorozirconate, Rb2ZrCl6, 79 
Rubidium Cobaltinitrite, Rb3Co(N02)6, 79 
Rubidium Cyanide, RbCN, 18 
Rubidium Dithionate, Rb2S206, 55 
Rubidium Ferricyanide, Rb3Fe(CN)6, 79 
Rubidium Hydrosulfide, RbHS (low), 18 
Rubidium Hydrosulfide, RbHS (high), 18 
Rubidium Iridium Nitrite, Rb8lr(N02)6,79 
Rubidium Nitrate, RbNCDa, 55 
Rubidium Osmiamate, RbOsNOs, 66 
Rubidium Perrhenate, RbRe04, 66 
Rubidium Rhodium Nitrite, 

Rb8Rh(N02)6, 79 
Rubidium Trinitride, RbNs, 39 
Ruthenium Disulfide, RuSa, 26 

SaPMoM04o*30H20, 86 
Samarium Carbide, SaCa, 26 
Sanidine, KAlSiiO*, 111, 128 
SbaTlv, 40 

SbZn, 18 
Scandium Borate, ScBOs, 55 
Scapolite, 111 
Schizolite, 128 
Schlippe's Salt, Na3SbS4'9H20, 86 
Schneebergite, (Ca,Na,Fe)2Sb206(0H), 100 
Scolecite, CaAbSiaOio-SHaO, HI 
Selenium, a-Se, 11 
Selenium, jfl-Se, 11 
Siderite. See Ferrous Carbonate 
Silicon Carbide, SiC (II), 18 
Silicon Dioxide, Si02, 26 
Silicon Tetrafluoride, SiF4, 39 
Silicon Tetraiodide, SiR, 39 
Sillimanite, Al208'Si02, HI 
Silver, Ag, 9 
Silver Antimony Sulfide, AgSbS2, 40 
Silver Chlorite, AgClOj, 40 
Silver Cyanide, AgCN, 16 
Silver Fluorate, AgFOa, 54 
Silver Iodide, Agl, 16 
Silver Iodide, Agl (low), 16 
Silver Iodide, Agl (high), 16 
Silver Mercuric Iodide, a-Ag2Hgl4, 64 
Silver Mercuric Iodide, /3-Ag2Hgl4, 64 
Silver Nitrate Diammoniate, 

AgN03-2NH3, 82 
Silver Nitrate Urea, 

AgN03C0(NH2)2, 131 
Silver Periodate, Agl04, 64 
Silver Perrhenate, AgRe04, 64 
Silver Selenate, Ag2Se04, 64 
Silver Sulfate, Ag2S04, 64 
Silver Sulfate Tetrammoniatc, 

Ag2S04-4NH3, 83 
Silver Sulfide, Ag2S, 24 
Silver Telluride, Ag2Te, 24 
Skolopsite, 125 
Sodahte, Na4Al3Si30i2Cl, HI 
Sodium Bicarbonate, NallCOa, 55 
Sodium Bromide Dihydrate, 

NaBr -2H20, 82 
Sodium Carbonate Monohydrate, 

Na2C03-H20. 82 
Sodium Columbiate, NaCbOa, 55 
Sodium Cyanate, NaCNO, 38 
Sodium Cyanide, NaCN, 17 
Sodium Ferrite, Na2Fe204, 41 
Sodium Fluophosphate, 

2Na3P04 NaF‘19H20, 86 
Sodium Hydrosulfide, NaHS (low), 17 
Sodium Hydrosulfide, NaHS (high), 18 
Sodium Iodide Dihydrate, Nal-^HiO, 82 
Sodium Nitrate, NaNOs, 55 
Sodium Nitrite, NaN02, 41 
Sodium Selenide, Na2Se, 25 
Sodium Sulfate, Na2S04, 66 
Sodium Sulfide, Na^, 25 
Sodium Sulfite, NajSUa!, 55 
Sodium Tantalate, NaTaO«, 55 
Sodium Telluride, Na2Te, 25 
Sodium Trinitride, NaNs, 38 
Sodium Tungstate, NaWOs, 55 
Sperrylite. See Platinum Arsenide 
Spessartite, 128 
Spinel. S^ Magnesium Aluminate 
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Spodumene, LiAl(8103)2, 111 
SrPbs, 39 
SrTl, 18 
Stannite, Cu2FeSnS4, 65 
Stannous Oxide, SnO, 18 
a-Stearic Acid, CH3(CH2)i6COOH, 138 
/i-Stearic Acid, CH3(CH2)ifiCOOH, 139 
Stephanite, Ag6SbS4, 64 
Stibiconite, 86204 *1120, 82 
Stibnite. See Antimony Trisvlfide 
Stilbene, CoHsCH^CHCeHs, 148 
Stilbene-f 2 mol. 1, 3, 5 Trinitrobenzene, 

CeH.CH=CHCeHfi • 2[C6H8 (N02)3], 
149 

Strontium Aluminate, Sr3[Al(0H)6]2, 79 
Strontium Boride, SrBe, 40 
Strontium Bromide Hexahydrate, 

SrBrs-eHaO, 86 
Strontium Carbide, SrC2, 26 
Strontium Chloride Hexahydrate, 

SrCl2-6H20, 86 
Strontium Fluoride, SrF2, 26 
Strontium Hafniate, SrHfOa, 56 
Strontium Imidc, SrNH, 18 
Strontium Iodide Hexahydrate, 

Srla-OHaO, 86 
Strontium Nickel Nitrite, Sr2Ni(N02)6, 79 
Strontium Nitrate, Sr(N03)2, 56 
Strontium Oxide, SrO, 18 
Strontium Peroxide Octahydrate, 

Sr02-8H20, 86 
Strontium Zirconate, SrZrOa, 56 
Stvphnic Acid, C6H(OH)2(N02)3, 147 
a-Succinic Acid, C00H(CH2)2C00H, 138 
^i-Succinic Acid, C00H(CH2)2C00H, 138 
Sulfur, 8, 11 
Sulphohalite, 2Na2S04-NaCl-NaF, 100 
Sulvanite. See Copper Vonadinm Sulfide 
Swedenborgite, NaSbOgABeO, 55 
Synchisite, CaCOs-RFCOg, 54 

TazC, 26 
Talc, Mg3Si40io(OH)2, 111 
Tantalum, Ta, 11 
Tantalum Carbide, TaC, 18 
Telluric Acid, Te(OH)6, 40 
Telluric Acid, Te(OH)6 (second form), 40 
Tenorite. See Cupric Oxide 
Terphenyl. See p-Diphenylbenzene 
1, 3, 4, 5 Tetraacetyl-/8-d-Fructopyranose, 

141 . 
Tetradymite, BigTegS^ 100 
Tetranaethyl Ammonium Fluosilicate, 

, CN(CH8)4]2SiFe, 133 
1,3,4, 5 Tetramethyl-jO-d-Fructopyranose, 

141 
2, 3, 5, 6 Tetramethyl-y-d-Mannonolac- 

tone, 142 
Tetramminopalladous Chloride Monohy¬ 

drate, Pd(NH3)4Cl2*H20, 83 
Tetramminoplatinous Chloride Monohy¬ 

drate, Pt(NH3)4Cl2-H20, 83 
1, 2, 4, 6 Tetranitrobenzene, 

C3H2(N02)4, 147 
Tetraphosphonitrile, (PNCb)*, 100 , ‘ 

Thallium, Tl, 11 
Thallium Arsenic Sulfide, TlAsSg, 41 
Thallium Chloride, TlCl, 18 
Thallium Cyanide, TICN, 18 
Thallous Chloroplatinate, ThPtClfj, 80 
Thallous Chlorostannate, TbSnCla, 80 
Thallous Chlorotellurite, ThTeCh, 80 
Thallous Cobaltinitrite, Tl3Co(N02)6, 79 
Thallous Fluosilicate, ThSiF*, 80 
Thallous Iridium Nitrite, Tl3lr(N02)8, 80 
Thallous Osmiamate, TlOsNOs, 66 
Thallous Perrhenate, TlRe04, 66 
Thallous Rhodium Nitrite, Tl3Rh(N02)«, 

80 
Thallous Thiocyanate, liCNS, 39 
Thaumasite, ^ 

CaCOs-CaSOi-CaSiOj-'lSHaO, 111 
Thiophene, C4H4S, 159 
Thiourea, CS(NH2)^ 136 ^ u 
Thomsonite, '■ / 

NaCa2Al5Si*^:^^m 111 
Thorium Boride, 
TiAls, 39 > . 
Tilasite, CaMgCOEOAri),, 64 
Tin, Sn, 11 
Tin Arsenide, SnAs, 18 
Titanium Carbide, TiC, 18 
Titanium Tetrabromide, TiBr4,,39 
Titanium Tetraiodide, TiH, 39 
Tl2(VF6-H20), 82 
Tolane, CcHfiCsCCells, 149 
o-Tolidine, (CeHgCHaNH,)*, 150 
Tricalcium Phosphate Hydrate, 

Ca9(H20)2(PC)4)6, 69 
Trihydroxyoestrin, 162 
2, 3, 4 Trimethyl-5-1-Arabonolactone, 141 
2, 3, 5 Trimethyl-T-l-Rhamnonolactone, 

142 
2, 3, 4 Trimethyl-a-d-Xylopyranose, 141 
2, 4, 6 Trinitroaniline, 

C6H2(NH2)(N02)3, 147 
2, 4, 6 Trinitrobromobenzene, 

C6H2Br(N02)3, 147 
2, 4, 6 Trinitrochlorobenzene, 

C6H2C1(N02)3, 147 
2, 4, 6 Trinitrodiphenylamine, 

C6H6(NH)C6H2(N02)3, 148 
2, 4, 6 Trinitroiodobenzene, 

C6H2l(N02)3, 147 
2, 4, 6 Trinitrophloroglucinol, 

Ce(0H)8(N02)3, 148 
2, 4, 6 Trinitrotoluene, 

C3H2CH3(N02)3, 147 
Triphenyibenzene, C6H8(C6H5)3, 152 
Triphenyl Bismutliine Dichloride, 131 
Triphosphonitrile, (PNCb)#, 100 
Triphylite, Li(Fe,Mn)P04, 65 
Troilite. See Ferrotis Sulfide 
Tungsten, W, 11 ^ 
Tungsten, W (second form), 11 

Tungsten Carbide, WC, 18 
Tungsten Oxide, W4O11 (tetragonal), 40 
Tungstic Trioxide, WO*, 39 

■Tychite, 2MgC0*-2Na2C0**Na2S04, 100 
Tysonite, (Ce,La, • • • )F», 38 
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Ultramarines, 112 
Uranium, U, 11 
Urea, CO(NH3)j, 136 

Vanadinite, PbioCl3(V04)«, 66, 69 
Vanadium Oxide, VO, 18 
Veramon, 160 
Veronal. See 6^ 5 Diethyl Barbituric Acid 
Vesuvianite, 112 
Vitamin Bi Hydrochloride, 

C«Hi802N4S,2HC1, 163 
Voltaites, 100 

Wavellite, 4(PCWA1-2A1(0H)3*9HA 86 
Wbhlerite, (Si04)^(ZrF,Cb0)Ca2Na, 112 
Wolfsbergite. Copper Antimony Sulfide 
Wollastonite, CaSiO«, 112 

Xenon, X, 11 
bXylosGj CiHioOfi, 140 ^ 

Ytterbium Boride, YtBtf, 40 
Yttrium, Y, 11 
Yttrium Borate, YBOj, 56 
Yttrium Boride, YB«, 40 
Yttrium Carbide, YC2, 26 
Yttrium Vanadate, YVO4, 66 

Zinc, Zn, 11 
Zinc Aluminate, ZnAbO^, 66 

Zinc Ammonium Sulfate Hexahydrate, 
ZnS04-(NH4)3S04-6H20, 86 

Zinc Bromide Hexammoniate, 
ZnBrj*6NHs, 86 

Zinc Carbonate, ZnCOa, 56 
Zinc Chloride (basic), 

ZnCl2-4Zn(OH)2, 100 
Zinc Chlorite Dihydrate, 

Zn(C102)2-2H20, 83 
Zinc Chromite, ZnCr204, 66 
Zinc Ferrite, ZnFe204, 66 
Zinc Hydroxide, ZnCOHb, 26 
Zinc Iodide Hexammoniate, 

Znl2*6NH,, 86 
Zinc Oxide, ZnO, 18 
Zinc Perchlorate Tetrammoniate, 

Zn (0104)2 •4NH3, 83 
Zinc Phosphide, Zn3P2, 36 
Zinc Stannate, Zn2Sn04, 67 
Zinc Sulfate, ZnS04, 67 
Zinc Thiochromite, ZnCr2S4, 66 
Zinc Titanate, Zn2Ti04, 67 
Zirconium, Zr, 11 
Zirconium Carbide, ZrC, 18 
Zirconium Tetrafluoride, ZrF4, 39 

Zn3A82, 36 
Zoisite, (Si04)3-Al2Ca2(A10H), 112 

ZrW2, 26 
Zunyite, Ali3Sh02o(OH,F)i8Cl, 112 
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